Files
deteksi-badan/main.py
2023-08-31 23:00:15 +08:00

90 lines
3.3 KiB
Python

import cv2
import mediapipe as mp
import os
import numpy as np
import json
# Create the assets directory if it doesn't exist
if not os.path.exists('assets'):
os.makedirs('assets')
# Load the pose detection model
with mp.solutions.pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
cap = cv2.VideoCapture(0)
# read the dataset.json file
dataset_file = 'dataset.json'
if os.path.exists(dataset_file):
with open(dataset_file, 'r') as json_file:
data = json.load(json_file)
else:
data = []
l = len(data)
# Load saved pose images and store their landmarks and filenames
saved_landmarks = []
saved_filenames = []
for i in range(l):
filename = f'assets/{data[i]["nama"]}.jpg'
image = cv2.imread(filename)
if image is not None:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image_rgb)
if results.pose_landmarks:
landmarks = np.array([[landmark.x, landmark.y, landmark.z] for landmark in results.pose_landmarks.landmark])
saved_landmarks.append(landmarks)
saved_filenames.append(filename)
while True:
ret, frame = cap.read()
if not ret:
break
# Convert the image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Process the image and find the landmarks
results = pose.process(image)
# Draw the landmarks on the image
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp.solutions.drawing_utils.draw_landmarks(image, results.pose_landmarks, mp.solutions.pose.POSE_CONNECTIONS)
# Compare the pose with saved pose dataset images
highest_similarity = -1
most_similar_filename = ""
if results.pose_landmarks:
detected_landmarks = np.array([[landmark.x, landmark.y, landmark.z] for landmark in results.pose_landmarks.landmark])
for i, saved_landmark in enumerate(saved_landmarks):
# Calculate cosine similarity between the landmarks
similarity = np.dot(detected_landmarks.flatten(), saved_landmark.flatten()) / (np.linalg.norm(detected_landmarks) * np.linalg.norm(saved_landmark))
if similarity > highest_similarity:
highest_similarity = similarity
most_similar_filename = saved_filenames[i]
# Calculate similarity percentage
similarity_percentage = round(highest_similarity * 100, 2)
# Display the most similar filename and similarity percentage if similarity is above 96%
print (similarity_percentage)
print (most_similar_filename)
if similarity_percentage > 93:
text = f"Most Similar: {most_similar_filename} - Similarity: {similarity_percentage}%"
cv2.putText(image, text, (10, image.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# Display the image
cv2.imshow('Pose Detection', image)
# Exit the loop if the 'ESC' key is pressed
if cv2.waitKey(1) == 27 or cv2.waitKey(1) == ord('q'):
break
# Release the capture and destroy the window
cap.release()
cv2.destroyAllWindows()