hand-detection/main.py

96 lines
3.5 KiB
Python
Raw Normal View History

2024-05-29 03:18:12 +00:00
import cv2
import numpy as np
import mediapipe as mp
# Initialize MediaPipe hand detection
mp_hands = mp.solutions.hands
hands = mp_hands.Hands()
# Initialize MediaPipe drawing utilities
mp_drawing = mp.solutions.drawing_utils
# Initialize camera capture
cap = cv2.VideoCapture(0)
# Define the lower and upper bounds of the green color in HSV
lower_green = np.array([35, 100, 100])
upper_green = np.array([85, 255, 255])
# Loop through camera frames
while True:
# Read frame from camera
ret, frame = cap.read()
# Convert frame to RGB for MediaPipe
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Convert frame to HSV for color detection
frame_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Detect hand landmarks with MediaPipe
results = hands.process(frame_rgb)
# Draw landmarks for the first detected hand with palm facing up
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
wrist_y = hand_landmarks.landmark[mp_hands.HandLandmark.WRIST].y
mcp_y = hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_MCP].y
if wrist_y < mcp_y:
mp_drawing.draw_landmarks(
frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)
# Check if green color is detected near hand landmarks
landmarks_near = False
landmarks_touched = []
for landmark in mp_hands.HandLandmark:
x = int(hand_landmarks.landmark[landmark].x * frame.shape[1])
y = int(hand_landmarks.landmark[landmark].y * frame.shape[0])
distance = np.sqrt((x - x_green_center)**2 + (y - y_green_center)**2)
if distance < 100:
landmarks_near = True
landmarks_touched.append(landmark)
# Display text based on whether the green color is near the landmarks
if landmarks_near:
# print landmarks touched length
print(len(landmarks_touched))
# text = ', '.join(str(landmark) for landmark in landmarks_touched)
# dont show many, just show one
text = str(landmarks_touched[0])
cv2.putText(frame, f'Green Detected Near: {text}', (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Create a mask for the green color
green_mask = cv2.inRange(frame_hsv, lower_green, upper_green)
# Find contours in the green mask
contours, _ = cv2.findContours(
green_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Calculate the center of the largest contour
largest_contour = max(contours, key=cv2.contourArea, default=None)
if largest_contour is not None:
moments = cv2.moments(largest_contour)
if moments["m00"] != 0:
x_green_center = int(moments["m10"] / moments["m00"])
y_green_center = int(moments["m01"] / moments["m00"])
else:
x_green_center, y_green_center = -1, -1
else:
x_green_center, y_green_center = -1, -1
# Draw green contours on frame
cv2.drawContours(frame, contours, -1, (0, 255, 0), 2)
# Show frame with landmarks and green color
cv2.imshow('Hand Landmarks and Green Color Detection', frame)
# Exit on 'q' key press
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release camera and destroy windows
cap.release()
cv2.destroyAllWindows()