Files
pengujian_fuzzy/.ipynb_checkpoints/pengujian_fuzzy-checkpoint.ipynb
2022-04-01 00:07:20 +08:00

1861 lines
129 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "0fedd17f",
"metadata": {},
"source": [
"# Metode Fuzzy\n",
"### import library numpy(untuk mengolah list dan angka) dan panda(untuk membaca dataset)"
]
},
{
"cell_type": "code",
"execution_count": 371,
"id": "721c3e36",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import asyncio"
]
},
{
"cell_type": "markdown",
"id": "1181afa6",
"metadata": {},
"source": [
"### read dataset kemudian menampilkan dataset"
]
},
{
"cell_type": "code",
"execution_count": 372,
"id": "e7835698",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Usia</th>\n",
" <th>Berat</th>\n",
" <th>Keliling</th>\n",
" <th>Ukuran_batang</th>\n",
" <th>Jarak_duri</th>\n",
" <th>Keterangan</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>14</td>\n",
" <td>753</td>\n",
" <td>44.0</td>\n",
" <td>4.5</td>\n",
" <td>10.9</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>18</td>\n",
" <td>505</td>\n",
" <td>42.0</td>\n",
" <td>4.0</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>17</td>\n",
" <td>750</td>\n",
" <td>43.0</td>\n",
" <td>3.0</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>15</td>\n",
" <td>755</td>\n",
" <td>44.0</td>\n",
" <td>5.0</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>14</td>\n",
" <td>815</td>\n",
" <td>45.0</td>\n",
" <td>4.2</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>17</td>\n",
" <td>660</td>\n",
" <td>41.5</td>\n",
" <td>4.5</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>15</td>\n",
" <td>700</td>\n",
" <td>42.0</td>\n",
" <td>3.0</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>16</td>\n",
" <td>820</td>\n",
" <td>46.0</td>\n",
" <td>4.0</td>\n",
" <td>10.0</td>\n",
" <td>Matang</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>12</td>\n",
" <td>850</td>\n",
" <td>44.0</td>\n",
" <td>4.5</td>\n",
" <td>10.0</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>11</td>\n",
" <td>830</td>\n",
" <td>42.0</td>\n",
" <td>4.2</td>\n",
" <td>10.0</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>10</td>\n",
" <td>900</td>\n",
" <td>42.0</td>\n",
" <td>3.0</td>\n",
" <td>8.5</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>9</td>\n",
" <td>900</td>\n",
" <td>30.0</td>\n",
" <td>2.5</td>\n",
" <td>7.5</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>9</td>\n",
" <td>850</td>\n",
" <td>35.0</td>\n",
" <td>3.0</td>\n",
" <td>7.5</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>13</td>\n",
" <td>800</td>\n",
" <td>40.0</td>\n",
" <td>3.9</td>\n",
" <td>9.0</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>11</td>\n",
" <td>950</td>\n",
" <td>41.0</td>\n",
" <td>3.8</td>\n",
" <td>8.5</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>13</td>\n",
" <td>860</td>\n",
" <td>40.0</td>\n",
" <td>4.0</td>\n",
" <td>9.5</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Usia Berat Keliling Ukuran_batang Jarak_duri Keterangan\n",
"0 14 753 44.0 4.5 10.9 Matang\n",
"1 18 505 42.0 4.0 10.0 Matang\n",
"2 17 750 43.0 3.0 10.0 Matang\n",
"3 15 755 44.0 5.0 10.0 Matang\n",
"4 14 815 45.0 4.2 10.0 Matang\n",
"5 17 660 41.5 4.5 10.0 Matang\n",
"6 15 700 42.0 3.0 10.0 Matang\n",
"7 16 820 46.0 4.0 10.0 Matang\n",
"8 12 850 44.0 4.5 10.0 Mentah\n",
"9 11 830 42.0 4.2 10.0 Mentah\n",
"10 10 900 42.0 3.0 8.5 Mentah\n",
"11 9 900 30.0 2.5 7.5 Mentah\n",
"12 9 850 35.0 3.0 7.5 Mentah\n",
"13 13 800 40.0 3.9 9.0 Mentah\n",
"14 11 950 41.0 3.8 8.5 Mentah\n",
"15 13 860 40.0 4.0 9.5 Mentah"
]
},
"execution_count": 372,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_durian = pd.read_csv(\"dataset/dataset.csv\")\n",
"data_durian"
]
},
{
"cell_type": "markdown",
"id": "990c4cac",
"metadata": {},
"source": [
"### menghitung field usia untuk mencari nilai semesta pembicaraan\n",
"### berdasarkan minimal nilai dan maksimal nilai\n",
"### mid_usia sebagai domain untuk fuzzy antara output masak @ mentah"
]
},
{
"cell_type": "code",
"execution_count": 373,
"id": "f0789ec2",
"metadata": {},
"outputs": [],
"source": [
"def get_average(min,max) :\n",
" return (min + max) / 2"
]
},
{
"cell_type": "code",
"execution_count": 374,
"id": "f3f362e1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[14, 18, 17, 15, 14, 17, 15, 16, 12, 11, 10, 9, 9, 13, 11, 13]\n",
"13.5\n"
]
}
],
"source": [
"data_usia = pd.DataFrame(data_durian)\n",
"data_usia = data_usia['Usia'].tolist()\n",
"_data_usia = data_usia\n",
"print(_data_usia)\n",
"min_usia = min(data_usia)\n",
"max_usia = max(data_usia)\n",
"# mid_usia = get_average(min_usia,max_usia) #13.5\n",
"mid_usia =np.median(data_usia)\n",
"print(mid_usia)"
]
},
{
"cell_type": "code",
"execution_count": 375,
"id": "9290d188",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"817.5\n"
]
}
],
"source": [
"data_berat = pd.DataFrame(data_durian)\n",
"data_berat = data_berat['Berat'].tolist()\n",
"_data_berat = data_berat\n",
"min_berat = min(data_berat)\n",
"max_berat = max(data_berat)\n",
"# mid_berat = get_average(min_berat,max_berat) #817.5\n",
"mid_berat =np.median(data_berat)\n",
"print(mid_berat)"
]
},
{
"cell_type": "code",
"execution_count": 376,
"id": "16e441bc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"42.0\n"
]
}
],
"source": [
"data_keliling = pd.DataFrame(data_durian)\n",
"data_keliling = data_keliling['Keliling'].tolist()\n",
"_data_keliling = data_keliling\n",
"min_keliling = min(data_keliling)\n",
"max_keliling = max(data_keliling)\n",
"# mid_keliling = get_average(min_keliling,max_keliling) #42.0\n",
"mid_keliling =np.median(data_keliling)\n",
"print(mid_keliling)"
]
},
{
"cell_type": "code",
"execution_count": 377,
"id": "d51fab67",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.0\n"
]
}
],
"source": [
"data_ukuran_batang = pd.DataFrame(data_durian)\n",
"data_ukuran_batang = data_ukuran_batang['Ukuran_batang'].tolist()\n",
"_data_ukuran_batang = data_ukuran_batang\n",
"min_ukuran_batang = min(data_ukuran_batang)\n",
"max_ukuran_batang = max(data_ukuran_batang)\n",
"# mid_ukuran_batang = get_average(min_ukuran_batang,max_ukuran_batang) #4.0\n",
"mid_ukuran_batang = np.median(data_ukuran_batang) #4.0\n",
"print(mid_ukuran_batang)"
]
},
{
"cell_type": "code",
"execution_count": 378,
"id": "54b442e1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10.9\n"
]
}
],
"source": [
"data_jarak_duri = pd.DataFrame(data_durian)\n",
"data_jarak_duri = data_jarak_duri['Jarak_duri'].tolist()\n",
"_data_jarak_duri = data_jarak_duri\n",
"# print(data_jarak_duri)\n",
"min_jarak_duri = min(data_jarak_duri)\n",
"max_jarak_duri = max(data_jarak_duri)\n",
"mid_jarak_duri = get_average(min_jarak_duri,max_jarak_duri)#1.0\n",
"# mid_jarak_duri = np.median(data_jarak_duri)\n",
"print(max_jarak_duri)"
]
},
{
"cell_type": "code",
"execution_count": 379,
"id": "53f0a713",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<h3></h3>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Fungsi</th>\n",
" <th>Nama Variabel</th>\n",
" <th>Semesta Pembicaraan</th>\n",
" <th>Himpunan Fuzzy</th>\n",
" <th>Domain</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>Input</td>\n",
" <td>Usia</td>\n",
" <td>[ 9 , 18 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 9 , 14.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 13.0 , 18 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Berat</td>\n",
" <td>[ 505 , 950 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 505 , 827.5 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 807.5 , 950 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Keliling</td>\n",
" <td>[ 30.0 , 46.0 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 30.0 , 43.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 41.0 , 46.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Ukurang Batang</td>\n",
" <td>[ 2.5 , 5.0 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 2.5 , 4.5 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 3.5 , 5.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Jarak Duri</td>\n",
" <td>[ 7.5 , 10.9 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 7.5 , 9.95 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 8.95 , 10.9 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td>Output</td>\n",
" <td>Keterangan</td>\n",
" <td>[ 0 , 1 ]</td>\n",
" <td>Rendah (Mentah)</td>\n",
" <td>[ 0 , 0.5 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi (Masak)</td>\n",
" <td>[ 0.5 , 1 ]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"himpunan_fuzzy = pd.read_csv(\"dataset/himpunan_fuzzy.csv\")\n",
"\n",
"# Fuzzykasi Usia\n",
"himpunan_fuzzy.loc[0, 'Semesta Pembicaraan'] = f\"[ {min_usia} , {max_usia} ]\" # Semesta pembicaraan (Rendah) Usia\n",
"himpunan_fuzzy.loc[1, 'Semesta Pembicaraan'] = f\"[ {min_usia} , {max_usia} ]\" # Semesta pembicaraan (Tinggi) Usia\n",
"himpunan_fuzzy.loc[0, 'Domain'] = f\"[ {min_usia} , {mid_usia + 0.5} ]\" # Domain (Rendah) Usia\n",
"himpunan_fuzzy.loc[1, 'Domain'] = f\"[ {mid_usia - 0.5} , {max_usia} ]\" # Domain pembicaraan (Tinggi) Usia\n",
"\n",
"# Fuzzykasi Berat\n",
"himpunan_fuzzy.loc[2, 'Semesta Pembicaraan'] = f\"[ {min_berat} , {max_berat} ]\" # Semesta pembicaraan (Rendah) Berat\n",
"himpunan_fuzzy.loc[3, 'Semesta Pembicaraan'] = f\"[ {min_berat} , {max_berat} ]\" # Semesta pembicaraan (Tinggi) Berat\n",
"himpunan_fuzzy.loc[2, 'Domain'] = f\"[ {min_berat} , {mid_berat + 10} ]\" # Domain (Rendah) Berat\n",
"himpunan_fuzzy.loc[3, 'Domain'] = f\"[ {mid_berat - 10} , {max_berat} ]\" # Domain pembicaraan (Tinggi) Berat\n",
"\n",
"# Fuzzykasi Keliling\n",
"himpunan_fuzzy.loc[4, 'Semesta Pembicaraan'] = f\"[ {min_keliling} , {max_keliling} ]\" # Semesta pembicaraan (Rendah) Keliling\n",
"himpunan_fuzzy.loc[5, 'Semesta Pembicaraan'] = f\"[ {min_keliling} , {max_keliling} ]\" # Semesta pembicaraan (Tinggi) Keliling\n",
"himpunan_fuzzy.loc[4, 'Domain'] = f\"[ {min_keliling} , {mid_keliling + 1} ]\" # Domain (Rendah) Keliling\n",
"himpunan_fuzzy.loc[5, 'Domain'] = f\"[ {mid_keliling - 1} , {max_keliling} ]\" # Domain pembicaraan (Tinggi) Keliling\n",
"\n",
"# Fuzzykasi Keliling\n",
"himpunan_fuzzy.loc[4, 'Semesta Pembicaraan'] = f\"[ {min_keliling} , {max_keliling} ]\" # Semesta pembicaraan (Rendah) Keliling\n",
"himpunan_fuzzy.loc[5, 'Semesta Pembicaraan'] = f\"[ {min_keliling} , {max_keliling} ]\" # Semesta pembicaraan (Tinggi) Keliling\n",
"himpunan_fuzzy.loc[4, 'Domain'] = f\"[ {min_keliling} , {mid_keliling + 1} ]\" # Domain (Rendah) Keliling\n",
"himpunan_fuzzy.loc[5, 'Domain'] = f\"[ {mid_keliling - 1} , {max_keliling} ]\" # Domain pembicaraan (Tinggi) Keliling\n",
"\n",
"# Fuzzykasi Ukuran Batang\n",
"himpunan_fuzzy.loc[6, 'Semesta Pembicaraan'] = f\"[ {min_ukuran_batang} , {max_ukuran_batang} ]\" # Semesta pembicaraan (Rendah) Ukuran Batang\n",
"himpunan_fuzzy.loc[7, 'Semesta Pembicaraan'] = f\"[ {min_ukuran_batang} , {max_ukuran_batang} ]\" # Semesta pembicaraan (Tinggi) Ukuran Batang\n",
"himpunan_fuzzy.loc[6, 'Domain'] = f\"[ {min_ukuran_batang} , {mid_ukuran_batang + 0.5} ]\" # Domain (Rendah) Ukuran Batang\n",
"himpunan_fuzzy.loc[7, 'Domain'] = f\"[ {mid_ukuran_batang - 0.5} , {max_ukuran_batang} ]\" # Domain pembicaraan (Tinggi) Ukuran Batang\n",
"\n",
"# Fuzzykasi Jarak Duri\n",
"himpunan_fuzzy.loc[8, 'Semesta Pembicaraan'] = f\"[ {min_jarak_duri} , {max_jarak_duri} ]\" # Semesta pembicaraan (Rendah) Jarak Duri\n",
"himpunan_fuzzy.loc[9, 'Semesta Pembicaraan'] = f\"[ {min_jarak_duri} , {max_jarak_duri} ]\" # Semesta pembicaraan (Tinggi) Jarak Duri\n",
"himpunan_fuzzy.loc[8, 'Domain'] = f\"[ {min_jarak_duri} , {mid_jarak_duri + 0.75} ]\" # Domain (Rendah) Jarak Duri\n",
"himpunan_fuzzy.loc[9, 'Domain'] = f\"[ {mid_jarak_duri - 0.25} , {max_jarak_duri} ]\" # Domain pembicaraan (Tinggi) Jarak Duri\n",
"\n",
"# Fuzzykasi Keterangan\n",
"himpunan_fuzzy.loc[10, 'Semesta Pembicaraan'] = f\"[ 0 , 1 ]\" # Semesta pembicaraan (Rendah) Keterangan\n",
"himpunan_fuzzy.loc[11, 'Semesta Pembicaraan'] = f\"[ 0 , 1 ]\" # Semesta pembicaraan (Tinggi) Keterangan\n",
"himpunan_fuzzy.loc[10, 'Domain'] = f\"[ 0 , 0.5 ]\" # Domain (Rendah) Keterangan\n",
"himpunan_fuzzy.loc[11, 'Domain'] = f\"[ 0.5 , 1 ]\" # Domain pembicaraan (Tinggi) Keterangan\n",
"\n",
"himpunan_fuzzy.loc[himpunan_fuzzy.duplicated(subset=['Fungsi']),['Fungsi']]=''\n",
"himpunan_fuzzy.loc[himpunan_fuzzy.duplicated(subset=['Nama Variabel']),['Nama Variabel']]=''\n",
"himpunan_fuzzy.loc[himpunan_fuzzy.duplicated(subset=['Semesta Pembicaraan']),['Semesta Pembicaraan']]=''\n",
"\n",
"\n",
"# himpunan_fuzzy.to_html(index=False)\n",
"\n",
"from IPython.display import display, HTML\n",
"display(HTML(\"<h3></h3>\"))\n",
"display(HTML(himpunan_fuzzy.to_html(index=False)))"
]
},
{
"cell_type": "markdown",
"id": "e4ac8e31",
"metadata": {},
"source": [
"### import librart skfuzzy & matplotlib untuk graph fuzzy\n",
"### fungsi menampilkan fuzzy"
]
},
{
"cell_type": "code",
"execution_count": 380,
"id": "4d525445",
"metadata": {},
"outputs": [],
"source": [
"import skfuzzy as fuzz\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def RangeSubjektif(_low, _high, _step):\n",
" subjektif = np.arange(_low, _high , _step)\n",
" return subjektif\n",
"\n",
"def FuzzyShow(_rule, _range_subjektif, _title):\n",
" lo = fuzz.trapmf(_range_subjektif, _rule[0])\n",
" hi = fuzz.trapmf(_range_subjektif, _rule[1])\n",
" \n",
" fig,ax = plt.subplots(nrows=1, figsize=(7,3))\n",
" ax.plot(_range_subjektif, lo, 'g' , linewidth = 1.5 , label= \"Mentah\")\n",
" ax.plot(_range_subjektif, hi, 'r' , linewidth = 1.5 , label= \"Masak\")\n",
" \n",
" ax.set_title(_title)\n",
" ax.legend()\n",
" \n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.get_xaxis().tick_bottom()\n",
" ax.get_yaxis().tick_left()\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" return lo, hi\n",
"\n",
"def FuzzyShow1(_rule, _range_subjektif, _title):\n",
" lo = fuzz.trapmf(_range_subjektif, _rule[0])\n",
" hi = fuzz.trapmf(_range_subjektif, _rule[1])\n",
" \n",
" fig,ax = plt.subplots(nrows=1, figsize=(16,3))\n",
" ax.plot(_range_subjektif, lo, 'r' , linewidth = 1.5 , label= \"Masak\")\n",
" ax.plot(_range_subjektif, hi, 'g' , linewidth = 1.5 , label= \"Mentah\")\n",
" \n",
" ax.set_title(_title)\n",
" ax.legend()\n",
" \n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.get_xaxis().tick_bottom()\n",
" ax.get_yaxis().tick_left()\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" return lo, hi\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "9e48d1f4",
"metadata": {},
"source": [
"### fuzzy untuk field usia"
]
},
{
"cell_type": "code",
"execution_count": 381,
"id": "aeab6802",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlvUlEQVR4nO3deXhV9b3v8fc3E2FGBhVJEGSSwI4gYTzWCS3DZRIUQ3ae2qutp+de2/rc9nDVatuH2vPUtufqbWtr6SmXtmzCjKKgKCrUWVAwzIKIEkRmkZkMv/vH3uA2ZNjJHlZ28nk9T55kr/XL+n1+BPhm/dba62fOOURERCS5pHgdQEREROpOBVxERCQJqYCLiIgkIRVwERGRJKQCLiIikoRUwEVERJKQCrhIE2NmRWY2qZ7f+5SZPRLjSPXJsdjMxnidQ8RLpveBi8SHmTmgl3NuZ9i2nwM9nXOFHmXKBeYB/VwS/+M3syHAn5xzg7zOIuIVnYGLNEJmllbNrn8FAslcvAGcc+8Cbcwsz+ssIl5RARfxiJndaGYlZjbdzA6Y2T4zm2RmY83sQzM7YmYPhbWfbWaPVv7+sNe7zex/m1kxcLKaIj4GWBP2Pd82szfM7HEz+8LMdpnZiND2PaFcd1WVISz/j8Ly//ewth3M7Fkz+9LM1prZo2b2etj+b5rZdjM7ZmZ/NLM1Zvad0L6fm9mcsLbdzMxVGtNq4L/V9c9dpLFQARfx1uVAJtAF+CnwF6AQGAR8A3jEzLrX4XjTCBa1ds65svAdZtYS6A5sr/Q9Q4FioAMwl+AU+2CgZyjLH8ysVQ3524by3wM8aWaXhPY9CZwMtbkr9HE+S0dgEfBgqN/twIg6jBNgK3BNHb9HpNFQARfxVinwS+dcKcHC2RH4v8654865zcAW6lakfuec2+OcO13Fvnahz8crbf/YOff/nHPlwHwgG5jhnDvrnHsROEewmFeXf4ZzrtQ5twI4AfQxs1RgCvAz59wp59wW4G9h3zcW2OycWxL6ReN3wOd1GOf5cbSrrZFIY6UCLhI/5UB6pW3pBIveeYdDhRPgfNHdH7b/NFDd2W9V9tSw74vQ59aVtlfuD+dcpBkOVzrTPxVq2wlIq5Qn/Osrwl+HrsmXUDet+WpMIk2OCrhI/HwKdKu0rTvwST2PdxJoEfb68iraVHtzmnPuJPAR0Lue/dfFQaAMyArblh329b7wfWZmldpGMta+wAdRJxVJUirgIvEzH3jYzLLMLMXMbgHGE7z2Wx8bgLFm1t7MLgfur8cxVgA31LP/iIVmFZYAPzezFmZ2NfCtsCbLAV/opr004H/y9SK9AbjezLqaWVuC18oruwF4Pi4DEEkCKuAi8TMDeBN4HTgK/BrwO+c21fN4/yB4xrkbeJHgLwh1NRPwh8544+0+gje4fU4wexFwFsA5dwi4g+CfyWEgB1gXtv8lguMrBt4Dngs/sJkNBk6E3k4m0iTpQS4iTYyZzQUWOOeeTnC/jwGXO+fuqmJfCsFr4H7n3KsRHGsx8NfQjXMiTZIKuIjERWjaPAPYSPBtaSuA75z/xcHMRgHvELxJ7t8JTqNfVc0d9CJSSXVPaxIRiVZrgtPmVxC80/0/gWfC9g8n+L7zDIJvl5uk4i0SOZ2Bi4iIJCHdxCYiIpKEPJtCHz16tHvhhRe86l5ERCRZVPmuEc/OwA8dOuRV1yIiIklPU+giIiJJSAVcREQkCamAi4iIJKFaC7iZzTKzA2ZW5eMfLeh3ZrbTzIrN7NrYxxQREZFwkdyFPhv4A/D3avaPAXqFPoYCfwp9TqjyivLaG4lIjVJTUr2OEFvl+n9BEswMUhIzuV1rAXfO/dPMutXQZCLw99B6vm+bWTsz6+yc2xerkJEY/tfhrP1sbSK7FGl0fnHTL3j4+oe9jhEb//Zv8NRTXqeQpuaxx2D69IR0FYv3gXcB9oS9Lgltu6iAm9m9wL0AXbt2jUHXX/nXQf/K+N7jY3pMkabkme3P8Kd1f+LB6x5M/jPxL7+E2bPhppuCHyKJct11CesqoQ9ycc7NJLicIXl5eTF9hus9194Ty8OJNDl9OvbhzkV3snr3akZeNdLrONFZuhTOnIFHH4URI7xOIxIXsZio3wtkh73OCm0TkSQyvvd4Wme0JrAx4HWU6AUC0L07DB/udRKRuIlFAV8GfCt0N/ow4Fiir3+LSPSapzdnct/JLN66mDNlZ7yOU3+ffw4vvwwFBcEbikQaqUjeRlYEvAX0MbMSM7vHzL5nZt8LNVkB7AJ2An8B/kfc0opIXBXmFvLl2S957sPnvI5Sf/PmQUUF+P1eJxGJK8+WE83Ly3Pr1q3zpG8RqVp5RTnZj2czNGsoS+9c6nWc+hk8OFjA33vP6yQisdKwFjMRkYYnNSWV/P75rNixgqOnj3odp+4+/BDWrdPZtzQJKuAi8jV+n59z5edYtGWR11HqLhAIXvfOz/c6iUjcqYCLyNdc2/la+nTok3x3ozsXLOA33wxXXOF1GpG4UwEXka8xM/w+P2s+WcOnxz71Ok7k3n0XPvpI0+fSZKiAi8hFCnwFABRtLPI4SR3MmQPNmsHkyV4nEUkIFXARuUiP9j0YljUseabRS0th/nwYPx7atvU6jUhCqICLSJX8Pj8bD2xk4/6NXkep3apVcPCgps+lSVEBF5Eq3dnvTlItNTnOwgMBuOQSGDPG6yQiCaMCLiJV6tSyE6N6jmLuxrlUuAqv41Tv5El4+mm4447gNXCRJkIFXESq5ff52fPlHl7/9HWvo1TvmWeCRVzT59LEqICLSLUm9plIy/SWBIob8DR6IADZ2Qldh1mkIVABF5FqtcxoyaSrJ7Fwy0LOlZ/zOs7FDh6ElSuDK4+l6L8zaVr0N15EauT3+Tl65ijP73je6ygXW7AAyss1fS5Nkgq4iNTo1h630qlFJ+ZsnON1lIvNmQM+X/BDpIlRAReRGqWlpHFnvzt5dvuzHDtzzOs4X/noI3j7bZ19S5OlAi4itfLn+jlbfpYlW5d4HeUrc+cGP0+b5m0OEY+ogItIrYZ2GUqPS3o0nIe6nF957IYboGtXr9OIeEIFXERqdX6Fslc+foXPjn/mdRx4/33Yvl3T59KkqYCLSET8uX4cjnmb5nkdJXj2nZEBt9/udRIRz6iAi0hEenfoTd4Ved5Po5eXw7x5MHZs8PnnIk1URAXczEab2XYz22lmD1Sxv6uZvWpm682s2MzGxj6qiHjN7/Pz/r732XZom3chXn0V9u3T9Lk0ebUWcDNLBZ4ExgA5wDQzy6nU7GFggXNuIJAP/DHWQUXEe/n980mxFG8frRoIQJs2MG6cdxlEGoBIzsCHADudc7ucc+eAecDESm0c0Cb0dVugAdzlIiKxdnmryxnZfSSBjQGcc4kPcPo0LF4MU6ZAZmbi+xdpQCIp4F2APWGvS0Lbwv0cKDSzEmAF8P2qDmRm95rZOjNbd/DgwXrEFRGv+X1+Pv7iY94qeSvxnT/7LBw/rulzEWJ3E9s0YLZzLgsYC/zDzC46tnNupnMuzzmX16lTpxh1LSKJdFvf28hMy/RmGj0QgM6d4cYbE9+3SAMTSQHfC2SHvc4KbQt3D7AAwDn3FpAJdIxFQBFpWNo0a8PEPhNZsGUBpeWliev4yBF4/vngymOpqYnrV6SBiqSArwV6mVl3M8sgeJPaskptPgVGAphZX4IFXHPkIo2U3+fn0KlDvPjRi4nrdOFCKC3V9LlISK0F3DlXBtwHrAS2ErzbfLOZzTCzCaFmPwK+a2YfAEXAt50nd7iISCKM6jmK9s3bJ/Y94YEA9O0LAwYkrk+RBiwtkkbOuRUEb04L3/bTsK+3AP8S22gi0lBlpGYwNWcqfy/+OyfOnaBVRqv4dvjJJ/Daa/Doo2AW375EkoSexCYi9eLP9XOq9BRPb3s6/p0VFQU/FxTEvy+RJKECLiL1MiJ7BFe2vTL+0+jOwZw5MGIEdO8e375EkogKuIjUS4qlUOAr4MWPXmT/if3x66i4GDZv1s1rIpWogItIvfl9fipcBfM3z49fJ4EApKXB1Knx60MkCamAi0i99bu0H9dcdk38ptErKoLXv0eNgo56tIRIOBVwEYlKYW4h7+59lx2Hd8T+4P/8J5SUQGFh7I8tkuRUwEUkKtP6T8Mw5m6cG/uDBwLQqhVMmFB7W5EmRgVcRKLSpU0Xbux2Y+xXKDt7FhYtgttugxYtYndckUZCBVxEoub3+dlxZAfrPlsXu4OuWAFffKG7z0WqoQIuIlGbkjOFjNSM2N7MFgjApZfCyJGxO6ZII6ICLiJRa5fZjnG9xzFv0zzKKsqiP+AXX8Bzz0F+fvAtZCJyERVwEYkJv8/P/pP7eXnXy9EfbPHi4DVwTZ+LVEsFXERiYmyvsbRt1jY20+iBAPTsCYMHR38skUZKBVxEYiIzLZM7cu5g6balnCo9Vf8D7d0Lq1cH3/utlcdEqqUCLiIx48/1c+LcCZZtX1b/gxQVBRcw0fS5SI1UwEUkZq6/8nqy2mRFN40eCMCQIcEpdBGplgq4iMRMiqUwrf80Xtj5AodOHar7AbZsgQ0bdPYtEgEVcBGJKb/PT1lFGQs3L6z7NwcCkJoKd94Z+2AijYwKuIjEVO5lufTr1K/u0+jOwdy5cMstcNll8Qkn0oiogItITJkZfp+fN/a8wcdHP478G998E3bv1vS5SIQiKuBmNtrMtpvZTjN7oJo2U81si5ltNrM4LEskIsmiwFcAULcVyubMgebNYdKk+IQSaWRqLeBmlgo8CYwBcoBpZpZTqU0v4EHgX5xz/YD7Yx9VRJLFle2u5Lqu10W+Qtm5c7BgAUycCK1bxz+gSCMQyUOGhwA7nXO7AMxsHjAR2BLW5rvAk865owDOuQOxDioiyaXQV8j3ln+PDZ9vYGDngTU3XrkSjhwJPrxFGqXS0lJKSko4c+aM11EarMzMTLKyskhPT4+ofSQFvAuwJ+x1CTC0UpveAGb2BpAK/Nw590LlA5nZvcC9AF27do0ooIgkpzv63cH3n/8+gY2B2gt4IAAdO8I3v5mYcJJwJSUltG7dmm7dumF6wt5FnHMcPnyYkpISunfvHtH3xOomtjSgF3AjMA34i5m1qyLgTOdcnnMur1OnTjHqWkQaovbN2zOm1xiKNhVRXlFefcPjx2HZMpg6FSI885Dkc+bMGTp06KDiXQ0zo0OHDnWaoYikgO8FssNeZ4W2hSsBljnnSp1zHwMfEizoItKE+X1+Pjv+GWs+WVN9o6VL4fRp3X3eBKh416yufz6RFPC1QC8z625mGUA+UPlBx08TPPvGzDoSnFLfVackItLojO89ntYZrQkU1/Ce8EAAuneH4cMTF0yaJDOjMOw+i7KyMjp16sS4cePqfcz/+I//iKhdq1at6t1HdWot4M65MuA+YCWwFVjgnNtsZjPMbEKo2UrgsJltAV4F/t05dzjmaUUkqTRPb87kvpNZtHURZ8qqmBr8/HNYtQoKCrTymMRdy5Yt2bRpE6dPnwbgpZdeokuXLlEdM9ICHg8RXQN3zq1wzvV2zvVwzv0ytO2nzrlloa+dc+5/OedynHM+59y8eIYWkeTh9/n58uyXLP9w+cU758+HigpNn0vCjB07luXLg38Xi4qKmDZt2oV9J0+e5O6772bIkCEMHDiQZ555BoDZs2czefJkRo8eTa9evZg+fToADzzwAKdPn2bAgAH4Q3+HJ02axKBBg+jXrx8zZ878Wt8/+clPuOaaaxg2bBj79++PeiwW0Xs04yAvL8+tW7fOk75FJHHKK8rJejyL4VnDWXLnkq/vHDIEysrg/fe9CScJs3XrVvr27QvA/S/cz4bPN8T0+AMuH8ATo5+osU2rVq148803mTFjBnPmzGHYsGE88cQT/Pa3v+W5557joYceIicnh8LCQr744guGDBnC+vXrWbhwITNmzGD9+vU0a9aMPn368Prrr5OdnU2rVq04ceLEhT6OHDlC+/btOX36NIMHD2bNmjUXbt5btmwZ48ePZ/r06bRp04aHH374oozhf05hqpye0qNURSSuUlNSye+Xz/Idyzl6+uhXOz78ENau1dm3JFRubi67d++mqKiIsWPHfm3fiy++yK9+9SsGDBjAjTfeyJkzZ/j0008BGDlyJG3btiUzM5OcnBw++eSTKo//u9/97sJZ9p49e9ixYwcAGRkZF661Dxo0iN27d0c9lkjeBy4iEpXC3EKeeOcJFm1ZxHcHfTe4MRAIXvcOm8KUpqG2M+V4mzBhAj/+8Y9ZvXo1hw9/dbuWc47FixfTp0+fr7V/5513aNas2YXXqamplJWVXXTc1atXs2rVKt566y1atGhx4ZcAgPT09At3mVf3/XWlM3ARibtrO19Lnw59vlqhzLlgAb/5ZrjiCm/DSZNz991387Of/Qyfz/e17aNGjeL3v//9hcf/rl+/vtZjpaenU1paCsCxY8e45JJLaNGiBdu2bePtt9+OffgwKuAiEnfnVyhb88ka9hzbA+++Cx99pOlz8URWVhY/+MEPLtr+yCOPUFpaSm5uLv369eORRx6p9Vj33nsvubm5+P1+Ro8eTVlZGX379uWBBx5g2LBh8Yh/gW5iE5GE+OjIR/T8fU8eu+Uxps8vgZkzYf9+aNvW62iSANXcnCWV6CY2EWlwerTvwbCsYczbMCf49rHx41W8RaKgAi4iCeP3+bn0rY1w4ICmz0WipAIuIgkztd9UCjcap1s1gzFjvI4jktRUwEUkYS6lJVO2p7C0fxoVGVp5TCQaKuAikjjPPEPzs+X8+eqTvP7p616nEUlqKuAikjiBABXZWbzfo0XNK5SJSK1UwEUkMQ4ehJUrSSnwMzHnNhZuWci58nNep5ImJB7LiVYlHkuHVkUFXEQSY8ECKC8Hvx+/z8/RM0d5fsfzXqeSJiQey4l6SQVcRBIjEACfD3w+bu1xK51adPrq0aoiCVLTcqLvvvsuw4cPZ+DAgYwYMYLt27cDsHnzZoYMGcKAAQPIzc29sEBJTUuHAhw6dIjhw4df6C/WtJiJiMTfrl3w1lvwq18BkJaSxp397uS/1v8XX579kjbN2ngcUBLq/vthw4bYHnPAAHjiiVqb5efnM2PGDMaNG0dxcTF33303r732GgBXX301r732GmlpaaxatYqHHnqIxYsX89RTT/HDH/4Qv9/PuXPnKC8vB2DWrFlfWzp0ypQpdOjQAYD9+/czYcIEHn30UW699dbYjjVEBVxE4m/u3ODnsLMdf66fP6z9A0u2LuHbA77tTS5pcmpaTvTYsWPcdddd7NixAzO7sEjJ8OHD+eUvf0lJSQmTJ0+mV69eQHDp0KVLlwJcWDq0Q4cOlJaWMnLkSJ588kluuOGGuI1FBVxE4uv8ymPXXw9du17YPLTLUHpc0oPAxoAKeFMTwZlyPFW3nOgjjzzCTTfdxNKlS9m9ezc33ngjAAUFBQwdOpTly5czduxY/vznP5OSklLt0qFpaWkMGjSIlStXxrWA6xq4iMTX+vWwbdtFj041Mwp8Bbzy8St8dvwzj8JJU1TdcqLHjh27cFPb7NmzL2zftWsXV111FT/4wQ+YOHEixcXFNS4dambMmjWLbdu28dhjj8VtHCrgIhJfc+ZAejrcfvtFu/w+PxWugnmb5nkQTJqq6pYTnT59Og8++CADBw6krKzswvYFCxbQv39/BgwYwKZNm/jWt75V69KhqampFBUV8corr/DHP/4xLuPQcqIiEj/l5ZCdDUOHQuhaYWWD/zKYClfBe/e+l+BwkkhaTjQyMV9O1MxGm9l2M9tpZg/U0G6KmTkzy4s8rog0Wq++Cvv21bjymN/n5/1977Pt0LYEBhNJfrUWcDNLBZ4ExgA5wDQzy6miXWvgh8A7sQ4pIkkqEIA2baCGJ13l988nxVL0aFWROorkDHwIsNM5t8s5dw6YB0ysot0vgMeAMzHMJyLJ6vRpWLwYpkyBzMxqm13e6nJGdh/J3E1z8eqSnkgyiqSAdwH2hL0uCW27wMyuBbKdczU+bsbM7jWzdWa27uDBg3UOKyJJ5Lnn4PjxGqfPz/P7/Ow6uou3S96uta0kL/2CVrO6/vlEfRe6maUA/wf4UW1tnXMznXN5zrm8Tp06Rdu1iDRkgQB07gyh99LW5La+t5GZlqlHqzZimZmZHD58WEW8Gs45Dh8+TGYNs1WVRfIgl71AdtjrrNC281oD/YHVZgZwObDMzCY453SbuUhTdOQIrFgB3/8+pKbW2rxNszZM6DOB+Zvn8/iox0lPTU9ASEmkrKwsSkpK0Oxr9TIzM8nKyoq4fSQFfC3Qy8y6Eyzc+UDB+Z3OuWNAx/OvzWw18GMVb5EmbNEiKC2NaPr8PL/Pz4LNC3hp10uM7TW29m+QpJKenk737t29jtGo1DqF7pwrA+4DVgJbgQXOuc1mNsPMJsQ7oIgkoTlz4OqrYeDAiL9ldM/RtG/enjnFc+IYTKTxiOhZ6M65FcCKStt+Wk3bG6OPJSJJ65NP4LXX4NFHwap8/kSVMlIzmJozlb8X/50T507QKqNVHEOKJD89SlVEYquoKPi5oKDmdlXw5/o5VXqKp7c9HdtMIo2QCriIxFYgACNGQD2ud47IHsGVba/U3egiEVABF5HYKS6GTZvqdPNauBRLocBXwEsfvcSBkwdiHE6kcVEBF5HYCQQgLQ2mTq33Ifw+P+WunPmb5scwmEjjowIuIrFRURG8/j1qFHTsWHv7avS7tB/XXHaNptFFaqECLiKx8dprsGdPvafPw/l9ft7Z+w47j+yMQTCRxkkFXERiIxCAli1hQvSPh5jmm4ZhzN04NwbBRBonFXARid7Zs7BwIdx2W7CIRymrTRY3dLuBOcVz9OxskWqogItI9FasgC++gMLCmB2y0FfIjiM7WPeZnsosUhUVcBGJXiAAl14KI0fG7JBTcqaQkZqhm9lEqqECLiLROXYsuPZ3fn7wLWQx0i6zHeN6j2PepnmUVZTF7LgijYUKuIhEZ/Hi4DXwGNx9Xpnf52f/yf288vErMT+2SLJTAReR6AQC0LMnDB4c80OP7TWWts3aahpdpAoq4CJSf3v3wquvBs++67DyWKQy0zK5Ped2lmxdwqnSUzE/vkgyUwEXkfqbNw+ci8v0+Xl+n58T507w7PZn49aHSDJSAReR+gsEglPnvXrFrYsbut1Al9ZdNI0uUokKuIjUz5YtsH59XM++IbhC2bT+03h+5/McOnUorn2JJBMVcBGpn0AAUlODbx+Ls8LcQsoqyli4eWHc+xJJFirgIlJ3zsHcuXDLLXDZZXHvLveyXPp16qdpdJEwKuAiUndvvgm7d8d9+vw8M8Pv8/PGnjfY/cXuhPQp0tBFVMDNbLSZbTeznWb2QBX7/5eZbTGzYjN72cyujH1UEWkwAgFo3hwmTUpYlwW+AgCtUCYSUmsBN7NU4ElgDJADTDOznErN1gN5zrlcYBHw61gHFZEGorQUFiyAiROhdeuEdXtluyu5rut1BDYGtEKZCJGdgQ8BdjrndjnnzgHzgInhDZxzrzrnzj9l4W0gK7YxRaTBWLkSDh9O2PR5OL/Pz5aDW/hg/wcJ71ukoYmkgHcB9oS9Lgltq849wPNV7TCze81snZmtO3jwYOQpRaThCASgQwcYNSrhXd+RcwdpKWkEinUzm0hMb2Izs0IgD/hNVfudczOdc3nOubxOnTrFsmsRSYTjx+GZZ2DqVEhPT3j3HVp0YEzPMRRtKqK8ojzh/Ys0JJEU8L1AdtjrrNC2rzGzW4CfABOcc2djE09EGpSlS+H0aU+mz8/z+/zsPb6XNZ+s8SyDSEMQSQFfC/Qys+5mlgHkA8vCG5jZQODPBIv3gdjHFJEGIRCAbt1gxAjPIozvM57WGa01jS5NXq0F3DlXBtwHrAS2Agucc5vNbIaZTQg1+w3QClhoZhvMbFk1hxORZPX557BqVdxWHotUi/QWTO47mUVbF3Gm7IxnOUS8lhZJI+fcCmBFpW0/Dfv6lhjnEpGGZv58qKjwdPr8PL/Pz98++BvLP1zOlJwpXscR8YSexCYikQkEYOBA6NvX6yTc3P1mLm91uR6tKk2aCriI1G7HDli7tkGcfQOkpqSS3y+f5TuWc/T0Ua/jiHhCBVxEahcIBK97J2DlsUj5c/2cKz/H4q2LvY4i4gkVcBGpmXPBAn7TTdClpmc4JdagzoPo3aG3ptGlyVIBF5GarV0LO3c2mOnz886vULZm9xr2HNtT+zeINDIq4CJSszlzoFkzmNLw7vYu8BXgcBRtKvI6ikjCqYCLSPXKyoJvHxs/Htq29TrNRXq278mwrGGaRpcmSQVcRKq3ahUcONDgps/D+X1+ivcXs+nAJq+jiCSUCriIVC8QgHbtYMwYr5NUa2q/qaRaqh6tKk2OCriIVO3kyeDiJXfcEbwG3kBd2vJSvtnjm8zdNJcKV+F1HJGEUQEXkaotWxYs4g14+vw8v8/Pp8c+5Y1P3/A6ikjCqICLSNUCAcjOhm98w+sktZp49URapLfQzWzSpKiAi8jFDh2ClSth2jRIafj/TbTKaMWkqyexcMtCzpWf8zqOSEI0/H+ZIpJ4CxYE30KWBNPn5/l9fo6cPsILO1/wOopIQqiAi8jFAgHo3x9yc71OErFbr7qVji06ahpdmgwVcBH5ul274M03obDQ6yR1kp6aTn6/fJZtX8aXZ7/0Oo5I3KmAi8jXzZ0b/Dxtmrc56sGf6+dM2RmWbF3idRSRuFMBF5GvnF957PrroWtXr9PU2dAuQ+lxSQ9No0uToAIuIl9Zvx62bUuqm9fCmRkFvgJe+fgV9h3f53UckbhSAReRrwQCkJ4Ot9/udZJ68/v8VLgK5m2a53UUkbiKqICb2Wgz225mO83sgSr2NzOz+aH975hZt5gnFZH4Ki+HoiIYOxbat/c6Tb316diHQZ0HaRpdGr1aC7iZpQJPAmOAHGCameVUanYPcNQ51xN4HHgs1kFFJM5Wr4Z9+5J2+jyc3+fnvX3vsf3Qdq+jiMRNWgRthgA7nXO7AMxsHjAR2BLWZiLw89DXi4A/mJk551wMs9bszTfh2LGEdSfS6Dz1FLRuDePGeZ0kavn98/nxSz/m12/8mttzkvdygCSfPh37cNUlVyWkr0gKeBdgT9jrEmBodW2cc2VmdgzoABwKb2Rm9wL3AnSN9R2u998Pa9fG9pgiTc13vgPNm3udImqdW3dmVI9RzNowi1kbZnkdR5qQx255jOn/Mj0hfUVSwGPGOTcTmAmQl5cX27PzWbOCKyeJSP2Ygc/ndYqYmXf7PLYe3Op1DGlisttmJ6yvSAr4XiA8UVZoW1VtSswsDWgLHI5Jwkj175/Q7kSkYWvTrA1DsypPFoo0HpHchb4W6GVm3c0sA8gHllVqswy4K/T17cArCb3+LSIi0sTUegYeuqZ9H7ASSAVmOec2m9kMYJ1zbhnwV+AfZrYTOEKwyIuIiEicmFcnynl5eW7dunWe9C0iIpJErKqNehKbiIhIElIBFxERSUKeTaGb2UHgkxgftiOV3nue5DSehq+xjUnjadg0noYvHmM65JwbXXmjZwU8HsxsnXMuz+scsaLxNHyNbUwaT8Om8TR8iRyTptBFRESSkAq4iIhIEmpsBXym1wFiTONp+BrbmDSehk3jafgSNqZGdQ1cRESkqWhsZ+AiIiJNggq4iIhIEmoUBdzMfmhmm8xss5nd73We+jCzWWZ2wMw2hW1rb2YvmdmO0OdLvMxYF9WM547Qz6jCzJLqrSPVjOc3ZrbNzIrNbKmZtfMwYp1VM6ZfhMazwcxeNLMrvMxYF1WNJ2zfj8zMmVlHL7LVRzU/n5+b2d7Qz2eDmY31MmNdVPfzMbPvh/4dbTazX3uVr66q+fnMD/vZ7DazDfHMkPQF3Mz6A98FhgDXAOPMrKe3qeplNlD5jfoPAC8753oBL4deJ4vZXDyeTcBk4J8JTxO92Vw8npeA/s65XOBD4MFEh4rSbC4e02+cc7nOuQHAc8BPEx0qCrO5eDyYWTbwTeDTRAeK0myqGA/wuHNuQOhjRYIzRWM2lcZjZjcBE4FrnHP9gN96kKu+ZlNpPM65O8//bIDFwJJ4Bkj6Ag70Bd5xzp1yzpUBawgWiaTinPsnwZXcwk0E/hb6+m/ApERmikZV43HObXXObfcoUlSqGc+Lob9zAG8DWQkPFoVqxvRl2MuWQNLc5VrNvyGAx4HpJNFYoMbxJKVqxvNvwK+cc2dDbQ4kPFg91fTzMTMDpgJF8czQGAr4JuAbZtbBzFoAY4FsjzPFymXOuX2hrz8HLvMyjNTobuB5r0PEgpn90sz2AH6S6wz8ImY2EdjrnPvA6ywxdF/oMsesZLqsVo3eBP//fsfM1pjZYK8Dxcg3gP3OuR3x7CTpC7hzbivwGPAi8AKwASj3MlM8uOD7/ZLqDKKpMLOfAGVAwOssseCc+4lzLpvgeO7zOk99hX6hf4gk/yWkkj8BPYABwD7gPz1NE700oD0wDPh3YEHo7DXZTSPOZ9/QCAo4gHPur865Qc6564GjBK9HNgb7zawzQOhz0kwvNRVm9m1gHOB3je+hCgFgitchotAD6A58YGa7CV7ieN/MLvc0VRScc/udc+XOuQrgLwTv/UlmJcASF/QuUEFwMZCkZWZpBC/jzo93X42igJvZpaHPXQn+wc31NlHMLAPuCn19F/CMh1mkEjMbTfDa6gTn3Cmv88SCmfUKezkR2OZVlmg55zY65y51znVzznUjWCyudc597nG0ejv/C33IbQQvISazp4GbAMysN5BB8q9OdguwzTlXEveenHNJ/wG8BmwBPgBGep2nnmMoIjglVkrwP5p7gA4E7z7fAawC2nudM8rx3Bb6+iywH1jpdc4ox7MT2EPwss0G4Cmvc8ZgTIsJFoVi4Fmgi9c5oxlPpf27gY5e54zy5/MPYGPo57MM6Ox1zijHkwHMCf2dex+42euc0YwntH028L1EZNCjVEVERJJQo5hCFxERaWpUwEVERJKQCriIiEgSUgEXERFJQirgIiIiSUgFXEREJAmpgIuIiCSh/w+hLLor3lB8KwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 504x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x_usia = RangeSubjektif(min_usia , max_usia , 1)\n",
"r_usia = np.array([\n",
" [min_usia,min_usia,mid_usia,mid_usia],\n",
" [mid_usia,mid_usia,max_usia,max_usia]\n",
"])\n",
"\n",
"lo_usia , hi_usia = FuzzyShow(r_usia , x_usia, 'Umur (minggu)')"
]
},
{
"cell_type": "code",
"execution_count": 382,
"id": "1f123edb",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABHgAAADQCAYAAAB88tbTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlk0lEQVR4nO3df5RdZX3v8fc3k98/yI9JBM0PEmAykwAxMSEGtYqAGrNiwkIXDcLV21Czem8VbeulWEW8VCy29qoIVmOLqHcZSqGYtFAQVNpYAY0XTIGcQ0IIySDEzBAChITMJM/945wJkzDJnJmzz5z58X6tNWtm7/2c53wna20O+eTZ3ydSSkiSJEmSJKnvGlTtAiRJkiRJklQeAx5JkiRJkqQ+zoBHkiRJkiSpjzPgkSRJkiRJ6uMMeCRJkiRJkvo4Ax5JkiRJkqQ+zoBHkiSpGyLiPyNiXvHnL0TE/+3mPL+MiNOzrU6SJA00BjySJKlXi4htEbEvIl6OiN0RcWdETK3g+90fEX/YyZgPAC+llB7O4C2/AlyTwTySJGkAM+CRJEl9wQdSSqOBNwI7gW90Z5KIGJxRPX8E/CCjudYB746IkzKaT5IkDUAGPJIkqc9IKe0HbgNmt52LiGER8ZWI2B4ROyPiWxExonjtnIhojIg/j4jngO9GxPiI+NeI2FVcEfSvETGlOP5a4PeAG4orhm44uoaIGAqcC/x7RzVGxJCIWBMRt0fE0IgYERHfK77Xpoi4IiIaj/qdfg28L7M/KEmSNOAY8EiSpD4jIkYCvw882O70dcBMYC5wGjAZ+Hy76ycBE4CTgVUU/v/nu8XjacA+4AaAlNJngfXAx1NKo1NKH++gjDrgUEqp8egLxWDpR8CrwEUppQPA1cB04BTgPcClHcy5CXhzJ7++JEnSMRnwSJKkvuBHEfECsIdCSPI3ABERFEKbP0kpPZ9Segn4ErCi3WsPAVenlF5NKe1LKTWnlG5PKb1SHH8t8K4u1DIOeKmD8ycAdwNPAn+QUjpYPH8R8KWU0u5iKHR9B699qTivJElSt2T1HLokSVIlXZBSui8iaoDlwL9HxGwK4c1I4NeFrAeAAGravXZX8TGowsXCKqCvAouB8cXTYyKipl0oczy7gTEdnF8EDAEuTimlduffBOxod7yD1xsDvFDCe0uSJHXIFTySJKnPSCkdTCn9M3AQeAfQROERq9NTSuOKX2OLDZkPv+yoaf4MqAfemlI6AXhn8XwcY/zRtlBYPDT5qPM/Bv4K+ElEnNju/LPAlHbHHe0ANgv4TSfvK0mSdEwGPJIkqc+IguUUVt5sSikdAr4DfDUi3lAcMzkijteweAyFUOiFiJhAoUdOezsp9MvpULGvzn108FhXSumvgR9SCHkmFk/fCnym2Nx5MnBEX5+IGA7MB+49Ts2SJEnHZcAjSZL6gn+JiJeBFyn0zPloSumx4rU/p7Cq5sGIeJFC+FJ/nLm+BoygsPrnQQp9c9r7OvCh4q5XHfXLAfg28N86upBS+ksKjZbvKwZI1wCNwFPF2m6j0IS5zQeA+1NKvz1OzZIkSccVRz4iLkmSpFJExH9S2G3r4S6+7n8AK1JK7yoePwRcllJ6tAJlSpKkAcKAR5IkqYIi4o0UHvl6gMIW63cCN6SUvlbNuiRJUv/iLlqSJEmVNZTCI10zKOyUdQvwzWoWJEmS+h9X8EiSJEmSJPVxNlmWJEmSJEnq46r2iNbixYvT3XcfvWmFJEmSJEmSjiM6Olm1FTxNTU3VemtJkiRJkqR+xUe0JEmSJEmS+jgDHkmSJEmSpD7OgEeSJEmSJKmP6zTgiYibIuJ3EfHoMa5HRFwfEVsiYmNEvCX7MiVJkiRJknQspeyidTNwA/D9Y1x/P1BX/Hor8HfF7/1fSnDoULWrkCRJkqqnpqai06eUOJT8f25J5RsUg4jocAOqfqHTgCel9B8RMf04Q5YD308pJeDBiBgXEW9MKT2bVZG91m23wUUXVbsKSZIkqXouvxy+/vWKTf+O776DX+z4RcXmlzRwHPz8QaLjHcb7hVJW8HRmMrCj3XFj8dzrAp6IWAWsApg2bVoGb11lp58O11xT7SokSZKk6rj7bvj+9+ErX4EhQzKfPt+U5xc7fsGHZn+IOW+Yk/n8kgaW/hzuQDYBT8lSSquB1QALFixIPfneFTF7duFLkiRJGojOOAMuvBDWr4dzz818+rX5tQD87Xv/lmlj+8E/EEtSBWWxi9YzwNR2x1OK5yRJkiT1Z+99LwwfDmvXVmT6tfm1zDtpnuGOJJUgi4BnHfCR4m5ai4A9A6L/jiRJkjTQjRoF559fCHhStgv0d768kwd2PMAFDRdkOq8k9VelbJO+BngAqI+Ixoi4LCL+KCL+qDjkLmArsAX4DvA/K1atJEmSpN5l+XJ4+mnYuDHTaf/liX8hkVhevzzTeSWpvyplF62LO7megD/OrCJJkiRJfccHPgARhVU8b35zZtOuza/l5LEnM+dEmytLUimyeERLkiRJ0kB14omwaFGmfXj2HtjLfVvvY3n9ciL69643kpQVAx5JkiRJ5Tn/fHj4Ydi/P5PpNu7cyP7W/Zx/yvmZzCdJA4EBjyRJkqTyzJpVaLK8eXMm0+WacoVpJ83KZD5JGggMeCRJkiSVp6Gh8D2fz2S6fHOeoTVDmT5ueibzSdJAYMAjSZIkqTwzZxa+53KZTJdrynHahNMYPKjTPWEkSUUGPJIkSZLKM2oUTJ2a6QqehokNmcwlSQOFAY8kSZKk8tXXZ7KCp+VgC1ue30J9bX0GRUnSwGHAI0mSJKl8DQ2FgCelsqbZunsrrYdaXcEjSV1kwCNJkiSpfPX18PLL8OyzZU2Tby485uUKHknqGgMeSZIkSeVr20mrzMe02rZIr59owCNJXWHAI0mSJKl8GW2Vnm/Kc9Lokxg3fFz5NUnSAGLAI0mSJKl8kycXdtMqdwVPc87HsySpGwx4JEmSJJUvotCHJ4MVPDZYlqSuM+CRJEmSlI0yt0pveqWJ5n3NruCRpG4w4JEkSZKUjYYG2L4dXnmlWy9va7DsCh5J6joDHkmSJEnZqK+HlGDz5m69PN9U3CLdHbQkqcsMeCRJkiRlo8yt0nNNOYbVDOPksSdnWJQkDQwGPJIkSZKyUVdXaLbczUbL+eY8dbV11AyqybgwSer/DHgkSZIkZWPkSJg2rawVPPbfkaTuMeCRJEmSlJ2Ghm6t4Dlw8ABbd2+lodaAR5K6o6SAJyIWR0Q+IrZExJUdXJ8WET+LiIcjYmNELMm+VEmSJEm9Xn19IeBJqUsve/L5JzmYDtpgWZK6qdOAJyJqgBuB9wOzgYsjYvZRwz4H3JpSmgesAL6ZdaGSJEmS+oCGBti7F555pksvc4t0SSpPKSt4FgJbUkpbU0oHgFuA5UeNScAJxZ/HAr/NrkRJkiRJfUZ9cQVOF/vw5JsLj3XNrJ2ZdUWSNCCUEvBMBna0O24snmvvC8ClEdEI3AV8oqOJImJVRGyIiA27du3qRrmSJEmSerVubpWea8rxpjFv4oRhJ3Q+WJL0Olk1Wb4YuDmlNAVYAvwgIl43d0ppdUppQUppwaRJkzJ6a0mSJEm9xhvfCGPGdLnRcr45T32t/XckqbtKCXieAaa2O55SPNfeZcCtACmlB4DhwMQsCpQkSZLUh0QUHtPqwgqelJJbpEtSmUoJeH4F1EXEjIgYSqGJ8rqjxmwHzgOIiFkUAh6fwZIkSZIGoi5ulb7rlV28sP8FV/BIUhk6DXhSSq3Ax4F7gE0Udst6LCKuiYhlxWF/BnwsIn4DrAH+e0pd3BdRkiRJUv9QXw87dhR20yqBO2hJUvkGlzIopXQXhebJ7c99vt3PjwNvz7Y0SZIkSX1SW6PlJ56AefM6HW7AI0nly6rJsiRJkiQVdHGr9HxTnhGDRzB17NTOB0uSOmTAI0mSJClbdXWFZssl9uHJNeeYWTuTQa/fiFeSVCL/CypJkiQpW8OHw4wZXVrBUz/RBsuSVA4DHkmSJEnZK3Gr9FdbX+WpF56iodb+O5JUDgMeSZIkSdlraCg0WT506LjDtjy/hUPpkCt4JKlMBjySJEmSsldfD/v2FbZLPw530JKkbBjwSJIkScpe21bpnTRabgt4ZtbOrHRFktSvGfBIkiRJyl6JW6Xnm/NMOWEKo4eO7oGiJKn/MuCRJEmSlL0TT4SxY0tawePjWZJUPgMeSZIkSdmLKDymdZwVPCkl8s156mttsCxJ5TLgkSRJklQZnWyV/tzLz/Hiqy+6gkeSMmDAI0mSJKkyGhrgt7+Fl17q8HK+ufD4lit4JKl8BjySJEmSKqOt0fIx+vC4RbokZceAR5IkSVJldLJVer4pz8ghI5l8wuQeLEqS+icDHkmSJEmVceqpMGjQMfvw5Jpz1NfWMyj8a4kklcv/kkqSJEmqjGHD4JRTjvuIlo9nSVI2DHgkSZIkVc4xdtLa17KPp1942gbLkpQRAx5JkiRJldPQAJs3w8GDR5ze/PxmEskVPJKUEQMeSZIkSZXT0AD798P27UeczjcVt0if6AoeScqCAY8kSZKkymnbKv2ox7TatkifWTuzpyuSpH6ppIAnIhZHRD4itkTElccYc1FEPB4Rj0XED7MtU5IkSVKfdIyt0vPNeaaNncbIISOrUJQk9T+DOxsQETXAjcB7gEbgVxGxLqX0eLsxdcBngLenlHZHxBsqVbAkSZKkPmTiRBg/vsMVPPbfkaTsdBrwAAuBLSmlrQARcQuwHHi83ZiPATemlHYDpJR+l3WhkiRJkvqgiMIqnnYreFJK5JvzrJy6soqFSaqmlpYWGhsb2b9/f7VL6bWGDx/OlClTGDJkSEnjSwl4JgM72h03Am89asxMgIj4T6AG+EJK6e6jJ4qIVcAqgGnTppVUoCRJkqQ+rr4e7n7trwe/fem3vHzgZRssSwNYY2MjY8aMYfr06UREtcvpdVJKNDc309jYyIwZM0p6TVZNlgcDdcA5wMXAdyJiXAcFrk4pLUgpLZg0aVJGby1JkiSpV2togOeegz17gNcaLPuIljRw7d+/n9raWsOdY4gIamtru7TCqZSA5xlgarvjKcVz7TUC61JKLSmlp4AnKAQ+kiRJkga6oxot55uLW6TXuoJHGsgMd46vq38+pQQ8vwLqImJGRAwFVgDrjhrzIwqrd4iIiRQe2drapUokSZIk9U9tW6UXA55cU47RQ0fzpjFvqmJRkga6iODSSy89fNza2sqkSZNYunRppu8zevToTOc7lk4DnpRSK/Bx4B5gE3BrSumxiLgmIpYVh90DNEfE48DPgP+VUmquVNGSJEmS+pBTT4XBgw/vpJVvzlNfW++/3kuqqlGjRvHoo4+yb98+AO69914mT55c5aq6r6QePCmlu1JKM1NKp6aUri2e+3xKaV3x55RS+tOU0uyU0pkppVsqWbQkSZKkPmTIEDjllMMBj1ukS+otlixZwp133gnAmjVruPjiiw9f++Uvf8nZZ5/NvHnzeNvb3ka+uArxscceY+HChcydO5c5c+awefNmAC644ALmz5/P6aefzurVq1/3Xk1NTZx99tmH3y9rpeyiJUmSJEnlKW6VvvfAXrbv2W7/HUmv+dSn4JFHsp1z7lz42tc6HbZixQquueYali5dysaNG1m5ciXr168HoKGhgfXr1zN48GDuu+8+/uIv/oLbb7+db33rW3zyk5/kkksu4cCBAxw8eBCAm266iQkTJrBv3z7OOussPvjBD1JbWwvAzp07WbZsGV/84hd5z3vek+3vWmTAI0mSJKnyilulb97lDlqSeo85c+awbds21qxZw5IlS464tmfPHj760Y+yefNmIoKWlhYAzj77bK699loaGxu58MILqasr7DF1/fXXc8cddwCwY8cONm/eTG1tLS0tLZx33nnceOONvOtd76rY72LAI0mSJKnyGhrgwAFyuZ8XDg14JLUpYaVNJS1btoxPf/rT3H///TQ3v9ZO+KqrruLd7343d9xxB9u2beOcc84B4MMf/jBvfetbufPOO1myZAnf/va3GTRoEPfddx8PPPAAI0eO5Jxzzjm8xfngwYOZP38+99xzT0UDnpJ68EiSJElSWYpbpee3/pIgOG3CaVUuSJIKVq5cydVXX82ZZ555xPk9e/Ycbrp88803Hz6/detWTjnlFC6//HKWL1/Oxo0b2bNnD+PHj2fkyJHkcjkefPDBw+MjgptuuolcLseXv/zliv0eBjySJEmSKq+4VXrud48zfdx0RgwZUeWCJKlgypQpXH755a87f8UVV/CZz3yGefPm0draevj8rbfeyhlnnMHcuXN59NFH+chHPsLixYtpbW1l1qxZXHnllSxatOiIuWpqalizZg0//elP+eY3v1mR3yNSShWZuDMLFixIGzZsqMp7S5IkSaqCSZN4y6rEibPP4t8u+bdqVyOpijZt2sSsWbOqXUavd4w/p+horCt4JEmSJPWIQ/UzydfspqHW/juSlDUDHkmSJEk9ovH0qbxSc4j6iW6RLklZM+CRJEmS1CPyM8YA0DBscpUrkaT+x4BHkiRJUo/ITSr89aP++Q7bR0iSymDAI0mSJKlH5Efs5YT9cNLWXdUuRZL6HQMeSZIkST0i1/IsDc1BPPFEtUuRpH7HgEeSJElSj8g//wT1LSdALlftUiSJiODSSy89fNza2sqkSZNYunRpt+f80pe+VNK40aNHd/s9jsWAR5IkSVLFvfTqSzS+2EjD0DdBPl/tciSJUaNG8eijj7Jv3z4A7r33XiZPLq8JfKkBTyUY8EiSJEmquCeaC49l1U+shy1boKWlyhVJEixZsoQ777wTgDVr1nDxxRcfvrZ3715WrlzJwoULmTdvHmvXrgXg5ptv5sILL2Tx4sXU1dVxxRVXAHDllVeyb98+5s6dyyWXXALABRdcwPz58zn99NNZvXr1Ee/92c9+lje/+c0sWrSInTt3lv27DC57BkmSJEnqRL65sGqn4eQF0PIjeOopmDmzukVJ6hU+dfeneOS5RzKdc+5Jc/na4q91Om7FihVcc801LF26lI0bN7Jy5UrWr18PwLXXXsu5557LTTfdxAsvvMDChQs5//zzAXjkkUd4+OGHGTZsGPX19XziE5/guuuu44YbbuCRR177XW666SYmTJjAvn37OOuss/jgBz9IbW0te/fuZdGiRVx77bVcccUVfOc73+Fzn/tcWb+zK3gkSZIkVVyuKcegGMRpZ/xe4YSPaUnqBebMmcO2bdtYs2YNS5YsOeLaj3/8Y6677jrmzp3LOeecw/79+9m+fTsA5513HmPHjmX48OHMnj2bp59+usP5r7/++sOrdHbs2MHmzZsBGDp06OFeP/Pnz2fbtm1l/y6u4JEkSZJUcfnmPDPGzWDYrDMLJ3I5+MAHqluUpF6hlJU2lbRs2TI+/elPc//999Pc3Hz4fEqJ22+/nfr6+iPGP/TQQwwbNuzwcU1NDa2tra+b9/777+e+++7jgQceYOTIkYdDIoAhQ4YQEcd9fVe5gkeSJElSxeWacjRMbIDx4+ENb3AFj6ReY+XKlVx99dWceeaZR5x/3/vexze+8Q1SSgA8/PDDnc41ZMgQWoo9xvbs2cP48eMZOXIkuVyOBx98MPvi2zHgkSRJklRRh9Ihnmh+gvra4r+CNzS4VbqkXmPKlClcfvnlrzt/1VVX0dLSwpw5czj99NO56qqrOp1r1apVzJkzh0suuYTFixfT2trKrFmzuPLKK1m0aFElyj8s2pKonrZgwYK0YcOGqry3JEmSpJ6z7YVtzPj6DFYvXc3H5n8MVq2CO+6AXbuqXZqkKtm0aROzZs2qdhm93jH+nKKjsSWt4ImIxRGRj4gtEXHlccZ9MCJSRCwovVxJkiRJ/VmuqbBap35iuxU8TU3QrteFJKk8nQY8EVED3Ai8H5gNXBwRszsYNwb4JPBQ1kVKkiRJ6rvyTcUt0ic2FE60NSy1D48kZaaUFTwLgS0ppa0ppQPALcDyDsb9JfBlYH+G9UmSJEnq43JNOcYNH8ekkZMKJxqKQY99eCQpM6UEPJOBHe2OG4vnDouItwBTU0p3Hm+iiFgVERsiYsMun7eVJEmSBoR8c56GiQ2HtwRm+nQYOtSARxrgqtUTuK/o6p9P2btoRcQg4P8Af9bZ2JTS6pTSgpTSgkmTJpX71pIkSZL6gFxT7rUdtABqaqCuzke0pAFs+PDhNDc3G/IcQ0qJ5uZmhg8fXvJrBpcw5hlgarvjKcVzbcYAZwD3FxP5k4B1EbEspeQ2WZIkSdIA9uKrL/Lsy8++1n+nTUMD/Nd/VacoSVU3ZcoUGhsb8emeYxs+fDhTpkwpeXwpAc+vgLqImEEh2FkBfLjtYkppDzCx7Tgi7gc+bbgjSZIk6XUNltvU18PatdDSAkOGVKEySdU0ZMgQZsyYUe0y+pVOH9FKKbUCHwfuATYBt6aUHouIayJiWaULlCRJktR35ZsLAc8Rj2hBYQVPays8+WQVqpKk/qeUFTyklO4C7jrq3OePMfac8suSJEmS1B/kmnLURA2nTjj1yAvtt0pvaHj9CyVJXVJ2k2VJkiRJOpZcU45Txp/C0JqhR15oC3jcSUuSMmHAI0mSJKli2rZIf52xY+Gkkwx4JCkjBjySJEmSKuLgoYNsbt78+v47bRoa3CpdkjJiwCNJkiSpIp7e8zSvHny14xU8UAh4cjlIqWcLk6R+yIBHkiRJUkXkmgqPX9VPPMYKnvp62L0bmpp6sCpJ6p8MeCRJkiRVRL6p8PjVcVfwgH14JCkDBjySJEmSKiLXlKN2RC0TR07seED7rdIlSWUx4JEkSZJUEbnm3LEfzwKYNg2GD3cFjyRlwIBHkiRJUkXkm/I01B7j8SyAmhqoq3MFjyRlwIBHkiRJUuZe2P8CO/fuPP4KHnhtJy1JUlkMeCRJkiRlrtMGy20aGmDrVnj11R6oSpL6LwMeSZIkSZk7vEV6bScreOrr4dAhePLJHqhKkvovAx5JkiRJmcs35xk8aDCnjD/l+APdKl2SMmHAI0mSJClzuaYcp004jSE1Q44/cObMwncbLUtSWQx4JEmSJGUu15Tr/PEsgDFjYPJkV/BIUpkMeCRJkiRlqvVQK1ue39J5g+U29fWu4JGkMhnwSJIkScrUU7ufouVQS2kreOC1rdJTqmxhktSPGfBIkiRJylS+ucQt0ts0NMCePbBzZwWrkqT+zYBHkiRJUqYOb5E+scQVPPXFcT6mJUndZsAjSZIkKVP5pjyTRk5iwogJpb3ArdIlqWwlBTwRsTgi8hGxJSKu7OD6n0bE4xGxMSJ+EhEnZ1+qJEmSpL4g15wrffUOwJQpMGKEK3gkqQydBjwRUQPcCLwfmA1cHBGzjxr2MLAgpTQHuA3466wLlSRJktQ35JpyNNSW2H8HYNCgwmNaruCRpG4rZQXPQmBLSmlrSukAcAuwvP2AlNLPUkqvFA8fBKZkW6YkSZKkvqD5lWaaXmkqvcFyG7dKl6SylBLwTAZ2tDtuLJ47lsuAf+voQkSsiogNEbFh165dpVcpSZIkqU9o20GrS49oQaEPz1NPwf79FahKkvq/TJssR8SlwALgbzq6nlJanVJakFJaMGnSpCzfWpIkSVIvkG/q4hbpbRoaICXYsqUCVUlS/1dKwPMMMLXd8ZTiuSNExPnAZ4FlKaVXsylPkiRJUl+Sa8oxZNAQpo+b3rUXtm2Vbh8eSeqWUgKeXwF1ETEjIoYCK4B17QdExDzg2xTCnd9lX6YkSZKkviDfnKeuto7BgwZ37YUzZxa+G/BIUrd0GvCklFqBjwP3AJuAW1NKj0XENRGxrDjsb4DRwD9FxCMRse4Y00mSJEnqx3JNOepru9h/B2DUKJg61UbLktRNJcXqKaW7gLuOOvf5dj+fn3FdkiRJkvqYloMtPLn7SS6cdWH3JmhocAWPJHVTpk2WJUmSJA1cW3dvpfVQa9cbLLdp2yo9pWwLk6QBwIBHkiRJUiZyTYXVN916RAsKK3heegmefTbDqiRpYDDgkSRJkpSJfHOhf079xDICHrAPjyR1gwGPJEmSpEzkmnKcOOpExg0f170J3CpdkrrNgEeSJElSJvLN+e733wGYPLmwm5YreCSpywx4JEmSJJUtpcSmXZu6338HIKKwiscVPJLUZQY8kiRJksrW9EoTu/fvLm8FD7hVuiR1kwGPJEmSpLKV3WC5TX09bN8Or7ySQVWSNHAY8EiSJEkqW9sW6Zms4EkJNm/OoCpJGjgMeCRJkiSVLd+UZ1jNME4ee3J5E7lVuiR1iwGPJEmSpLLlmnPU1dZRM6imvInq6grNlu3DI0ldYsAjSZIkqWz5pjK3SG8zYgScfLIreCSpiwx4JEmSJJXlwMEDbN29tbwt0ttzq3RJ6jIDHkmSJEllefL5JzmYDmazggcKfXjy+UKzZUlSSQx4JEmSJJWlbQetTFfw7N0LzzyTzXySNAAY8EiSJEkqy+GAZ2JGAU/bTlo+piVJJTPgkSRJklSW9dvXc+r4Uzlh2AnZTDhnDgwaBOvXZzOfJA0ABjySJEmSuu2lV1/iJ0/9hGX1y7KbtLYW3vY2WLs2uzklqZ8z4JEkSZLUbfc8eQ8HDh5gef3ybCe+4AL4zW9g27Zs55WkfsqAR5IkSVK3rc2vZcKICbx92tuznXh5MTBaty7beSWpnyop4ImIxRGRj4gtEXFlB9eHRcQ/Fq8/FBHTM69UkiRJUq/ScrCFO5+4k6UzlzJ40OBsJz/tNJg9G370o2znlaR+qtOAJyJqgBuB9wOzgYsjYvZRwy4DdqeUTgO+Cnw560IlSZIk9S4/3/5zdu/fnf3jWW2WL4f/+A94/vnKzC9J/UgpMftCYEtKaStARNwCLAcebzdmOfCF4s+3ATdERKSUUoa19jrPvvQsjzz3SLXLkCRJkqrie7/5HsNqhvHeU99bmTdYvhz+6q/gq18tNF2WpHIsXgwR1a6iYkoJeCYDO9odNwJvPdaYlFJrROwBaoGm9oMiYhWwCmDatGndLLn3+Pn2n3PRbRdVuwxJkiSpai5ouIDRQ0dXZvKzzoJp0+CLX6zM/JIGloMHB3zAk5mU0mpgNcCCBQv6/Oqec2ecy4OXPVjtMiRJkqSqmT3p6O4NGRo0CB56CJ5+unLvIWng6MfhDpQW8DwDTG13PKV4rqMxjRExGBgLNGdSYS9WO7KW2pG11S5DkiRJ6r9OOqnwJUk6rlJ20foVUBcRMyJiKLACOHqvwnXAR4s/fwj4aX/vvyNJkiRJktRbdLqCp9hT5+PAPUANcFNK6bGIuAbYkFJaB/wD8IOI2AI8TyEEkiRJkiRJUg+Iai20WbBgQdqwYUNV3luSJEmSJKmP6rCZUCmPaEmSJEmSJKkXM+CRJEmSJEnq46r2iFZE7AJ6636HE4GmahchyXtR6iW8F6Xq8z6UegfvRfUGTSmlxUefrFrA05tFxIaU0oJq1yENdN6LUu/gvShVn/eh1Dt4L6o38xEtSZIkSZKkPs6AR5IkSZIkqY8z4OnY6moXIAnwXpR6C+9Fqfq8D6XewXtRvZY9eCRJkiRJkvo4V/BIkiRJkiT1cQY8kiRJkiRJfdyADHgiYltE/FdEPBIRG4rnJkTEvRGxufh9fPF8RMT1EbElIjZGxFuqW73Uf0TEuIi4LSJyEbEpIs72XpR6VkTUFz8P275ejIhPeS9KPS8i/iQiHouIRyNiTUQMj4gZEfFQ8Z77x4gYWhw7rHi8pXh9epXLl/qFiPhk8R58LCI+VTznZ6L6hAEZ8BS9O6U0N6W0oHh8JfCTlFId8JPiMcD7gbri1yrg73q8Uqn/+jpwd0qpAXgzsAnvRalHpZTyxc/DucB84BXgDrwXpR4VEZOBy4EFKaUzgBpgBfBl4KsppdOA3cBlxZdcBuwunv9qcZykMkTEGcDHgIUU/t90aUSchp+J6iMGcsBztOXA94o/fw+4oN3576eCB4FxEfHGKtQn9SsRMRZ4J/APACmlAymlF/BelKrpPODJlNLTeC9K1TAYGBERg4GRwLPAucBtxetH34tt9+htwHkRET1XqtQvzQIeSim9klJqBf4duBA/E9VHDNSAJwE/johfR8Sq4rkTU0rPFn9+Djix+PNkYEe71zYWz0kqzwxgF/DdiHg4Iv4+IkbhvShV0wpgTfFn70WpB6WUngG+AmynEOzsAX4NvFD8iyYceb8dvheL1/cAtT1Zs9QPPQr8XkTURsRIYAkwFT8T1UcM1IDnHSmlt1BYUvfHEfHO9hdTYe9494+XKmsw8Bbg71JK84C9vLbcFfBelHpSsa/HMuCfjr7mvShVXrGnx3IK/wDyJmAUsLiqRUkDTEppE4XHHX8M3A08Ahw8aoyfieq1BmTAU/wXElJKv6PQZ2AhsLNtOV3x+++Kw5+hkNq2mVI8J6k8jUBjSumh4vFtFAIf70WpOt4P/L+U0s7isfei1LPOB55KKe1KKbUA/wy8ncIjH4OLY9rfb4fvxeL1sUBzz5Ys9T8ppX9IKc1PKb2TQt+rJ/AzUX3EgAt4ImJURIxp+xl4L4WleOuAjxaHfRRYW/x5HfCRYof0RcCedsvzJHVTSuk5YEdE1BdPnQc8jveiVC0X89rjWeC9KPW07cCiiBhZ7KXT9rn4M+BDxTFH34tt9+iHgJ8WVxZIKkNEvKH4fRqF/js/xM9E9REx0D4HIuIUCqt2oPCIyA9TStdGRC1wKzANeBq4KKX0fPED9gYKS2RfAf4gpbShCqVL/U5EzAX+HhgKbAX+gELw7L0o9aDiP3hsB05JKe0pnvNzUephEfG/gd8HWoGHgT+k0M/jFmBC8dylKaVXI2I48ANgHvA8sCKltLUqhUv9SESsp9DPqgX405TST/xMVF8x4AIeSZIkSZKk/mbAPaIlSZIkSZLU3xjwSJIkSZIk9XEGPJIkSZIkSX2cAY8kSZIkSVIfZ8AjSZIkSZLUxxnwSJIkSZIk9XEGPJIkSZIkSX3c/wcJl/eSXXtj/AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1152x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x_berat = RangeSubjektif(min_berat , max_berat , 1)\n",
"r_berat = np.array([\n",
" [min_berat,min_berat,mid_berat,mid_berat+10],\n",
" [mid_berat,mid_berat+10,max_berat,max_berat]\n",
"])\n",
"\n",
"lo_berat , hi_berat = FuzzyShow1(r_berat , x_berat, 'Berat (kg)')"
]
},
{
"cell_type": "code",
"execution_count": 383,
"id": "84aaee1a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhhUlEQVR4nO3de5xcdZnn8c/Tl6QTEhJyIRXSCYkkkBudqqEnBJ1Zua4hg4kr6oLgDRx8za4io04WFdRlRWHcURaFURwz6OgEWRk0M6Ioq+zgqECcKpp0LtCEYDrkThLJvS/P/FF1QqXpS3XX5dQ5/X2/Xnl1nVO/Puf5pZPz9O93nvodc3dEREQkWmrCDkBEREQGTwlcREQkgpTARUREIkgJXEREJIKUwEVERCJICVxERCSClMBFIsjM3m9mv8rbPmhmb8i9vt/MPp97/admtqmMcXzIzO4qw3GfMrMFpT6uSJwogYuEyMy2mNmledtXmdk+M3vzYI7j7mPcfXMv+59w93NKEWtPZjYCuAX4UhkO/7+B28pwXJHYUAIXqRJm9j7gHuDP3P3/hx1PAVYAG919WxmOvQa4yMwSZTi2SCwogYtUATP7EPA3wFvc/de5fePM7Ftmtt3MtpnZ582sto/vdzOb3cv+C82sPW97i5l9wsxazOyAmX3fzBry3l+ZO9/LZvbBvo6bczlw0i8aZvYnZvZrM9tvZlvN7P25/feb2b1m9pPcdP+/mVnCzO7KzThsNLNUcBx3Pwr8DnhLgX+FIsOOErhI+P6C7HTxJe6+Nm///UAnMBtIAf8Z+GAJzvcuYCkwC2gC3g9gZkuBjwGX5s554QDHORc4cX/dzM4EfgJ8FZgMJIFMj/PeAkwCjgG/Af49t/0D4Ms9jr8BWDSYjokMJ0rgIuG7DPgt8Gyww8ymAMuAm9z9kLvvAr4CXFWC893t7i+7+yvAP5NNtJBNsH/v7q3ufhj43ADHGQ+8mrf9buAxd1/t7h3uvtfdM3nvP+zuv8uNrh8Gjrr7d9y9C/g+2V9S8r2aO4eI9EIJXCR8fwGcDfydmVlu35lAPbA9Nx29H/gGcHoJzrcj7/VhYEzu9RnA1rz38l/3Zh8wNm97OvBCP+135r0+0sv2mJObMxbYP0AMIsOWErhI+HYClwB/Ctyb27eV7DTzJHcfn/tzqruX86NV24HGvO3pA7RvIfuLR2ArcFYJ45kHPFPC44nEihK4SBVw95fJJvGlZvYVd98O/Az4GzM71cxqzOyswX68bJAeBD5gZvPMbDRw6wDtHwHy4/kecKmZvcvM6sxsopklhxJIrrDuPODnQ/l+keFACVykSrj774GLgXeY2ReB9wIjgPVkp6t/AEwt4/l/AtwN/BJoI3tfHrIzAb35Z2CumZ2RF/8y4OPAK2QL2IZahPZW4PHcLzYi0gtz97BjEJEqZGbzgHXASHfv7KPNDcB8d7+pxOd+Erje3deV8rgicaIELiInmNl/ITs1Phr4NtDt7m8LNSgR6ZWm0EUk34eAXWSrybvIVsiLSBXSCFxERCSCNAIXERGJoLqwTrx06VL/6U9/GtbpRUREosJ62xnaCHzPnj1hnVpERCTyNIUuIiISQUrgIiIiEaQELiIiEkEDJnAzW2Vmu8ys1xWRLOtuM2szsxYz+6PShykiIiL5CqlCvx/4GvCdPt6/HJiT+3M+8Le5rxXV1d1V6VOKiEReTbfz2lNspWhmUFOZye0BE7i7/6uZzeynyQrgO55dEea3ZjbezKbmnqZUMRd86wKefvnpSp5SRCTS/upX8NePhR1FzNx5J6xcWZFTleJz4NPIPgc40J7b97oEnnvwwQ0AM2bMKMGpX/Oh8z7EW89+a0mPKSISZ2/7/l1sHv8KiY/czOj60WGHEw9/8icVO1VFF3Jx9/uA+wCam5tLuobr9X90fSkPJyISb+50tN/Jt86Gsz9wGRfPujjsiGSQSjFRvw2YnrfdmNsnIiLVassW6l89RHoqpLenw45GhqAUCXwN8N5cNfoS4ECl73+LiMggZTIAvHzW6WR2ZkINRYZmwCl0M1sNXAhMMrN24LNAPYC7f53ss4OXAW3AYeAD5QpWRERKJJ2GmhpGJs/TCDyiCqlCv3qA9x347yWLSEREyi+dhrlzmX9mMz984mcc6TjCqPpRYUclg6CV2EREhqNMBpJJkokkXd7Ful29rtUlVUwJXERkuNmzB9rbIZUilUgBkN6hafSoUQIXERlucgVspFLMHD+TcSPHkdmRCTMiGQIlcBGR4SadG20nk5gZyURSI/AIUgIXERlu0mmYPh0mTgQglUjRsrNFz5SIGCVwEZHhJlfAFkgmkhzuOMzzrzwfWkgyeErgIiLDyeHDsGkTpFIndqWm5grZ9HnwSFECFxEZTp59Frq7TxqBz5s0jxG1I1TIFjFK4CIiw0lQwJY3Aq+vrWfh6QtVyBYxSuAiIsNJOg3jx8OZZ560O5VIkd6RJru4pkSBEriIyHASFLCZnbQ7mUiy5/AeXn715VDCksFTAhcRGS46O6Gl5aTp84BWZIseJXARkeHiuefg6NGTCtgCTVOaMEyFbBGiBC4iMlz0UsAWGDtyLLMnzNYIPEKUwEVEhotMBkaOhLlze307NTWlEXiEKIGLiAwX6TQsXAj19b2+nZySZPO+zRw4eqDCgclQKIGLiAwH7tkE3sv0eSBYkU2j8GhQAhcRGQ7a2+GVV3otYAskE9n3lMCjQQlcRGQ46KeALZAYkyAxJqFCtohQAhcRGQ4ymeziLU1N/TZLJVTIFhUFJXAzW2pmm8yszcxu7uX9GWb2SzNLm1mLmS0rfagiIjJk6TTMmQNjxvTbLJlI0rq7lWOdxyoUmAzVgAnczGqBe4DLgfnA1WY2v0ezW4AH3T0FXAXcW+pARUSkCAMUsAVSiRSd3Z207m6tQFBSjEJG4IuBNnff7O7HgQeAFT3aOHBq7vU4QIvpiohUi3374KWX+i1gC6iQLToKSeDTgK152+25ffk+B1xrZu3AI8BHejuQmd1gZmvNbO3u3buHEK6IiAxaJpP9WsAI/KwJZzF2xFjS21XIVu1KVcR2NXC/uzcCy4B/MLPXHdvd73P3Zndvnjx5colOLSIi/QoSeAEj8BqrYVFiEZmdmXJGJCVQSALfBkzP227M7ct3PfAggLv/BmgAJpUiQBERKVI6DVOnwpQpBTVPTkmS2ZGh27vLHJgUo5AE/jQwx8xmmdkIskVqa3q0+T1wCYCZzSObwDVHLiJSDQosYAukpqY4ePwgL7zyQhmDkmINmMDdvRP4MPAosIFstXmrmd1mZstzzT4O/LmZPQOsBt7v7l6uoEVEpEBHj8KGDQVNnwdUyBYNdYU0cvdHyBan5e/7TN7r9cCbShuaiIgUbd066Ooa1Ah8weQF1NXUkd6R5p0L3lnG4KQYWolNRCTOBlGBHhhZN5IFkxdoBF7llMBFROIsnYaxY2HWrEF9WzKR1JroVU4JXEQkztLp7P3vmsFd7lOJFDsO7mDHwR3liUuKpgQuIhJXXV3Q0jKoAraACtmqnxK4iEhctbXBoUODuv8dCBK4VmSrXkrgIiJxNYgV2Hoa1zCOWeNnaUW2KqYELiISV+k01NfDggVD+vbU1JRG4FVMCVxEJK4ymWzyHjFiSN+eSqRoe6WNV4+9Wtq4pCSUwEVE4sj9tQr0IUomkjhOy86W0sUlJaMELiISR9u3w65dQypgC6QS2e/V58GrkxK4iEgcFVHAFjhj7BlMGj1JHyWrUkrgIiJxlM6NmotI4GZGKpHSCLxKKYGLiMRRJgNnnQWnnlrUYVKJFOt2raOjq6M0cUnJKIGLiMRRkQVsgWQiyfGu42zYs6H4mKSklMBFROLmwAF44YWiCtgCqam5QjZ9HrzqKIGLiMRNS+5jXyUYgc+ZMIfR9aNVyFaFlMBFROImKGArwQi8tqaWpilNKmSrQkrgIiJxk8nA6afD1KklOVwqkSKzI4O7l+R4UhpK4CIicRMUsJmV5HDJRJIDxw6wZf+WkhxPSkMJXEQkTo4fh9bWkkyfB7QiW3UqKIGb2VIz22RmbWZ2cx9t3mVm682s1cz+sbRhiohIQdavh46OkhSwBRaevpBaq1UhW5WpG6iBmdUC9wCXAe3A02a2xt3X57WZA3wSeJO77zOz08sVsIiI9KOEBWyBUfWjmDtprkbgVWbABA4sBtrcfTOAmT0ArADW57X5c+Aed98H4O67Sh2oiIgUIJOBU06B2bNLetjU1BSPb3l8yN/f0dFBe3s7R48eLV1QMdPQ0EBjYyP19fUFtS8kgU8DtuZttwPn92hzNoCZ/RtQC3zO3X/a80BmdgNwA8CMGTMKClBERAYhnYamJqitLelhk1OSfLflu+w5vIdJoycN+vvb29sZO3YsM2fOxEpUXBcn7s7evXtpb29n1qxZBX1PqYrY6oA5wIXA1cA3zWx8LwHe5+7N7t48efLkEp1aREQA6O7OjsBLOH0eKHZFtqNHjzJx4kQl7z6YGRMnThzUDEUhCXwbMD1vuzG3L187sMbdO9z9ReA5sgldREQq5cUX4dVXS1rAFkgmsscsppBNybt/g/37KSSBPw3MMbNZZjYCuApY06PND8mOvjGzSWSn1DcPKhIRESlOGQrYAhNGTWDGuBmRLmQzM6699toT252dnUyePJkrrrhiyMf8whe+UFC7MWPGDPkcfRkwgbt7J/Bh4FFgA/Cgu7ea2W1mtjzX7FFgr5mtB34J/JW77y15tCIi0rdMJnvve+HCshw+WJEtqk455RTWrVvHkSNHAPj5z3/OtGnTijpmoQm8HAq6B+7uj7j72e5+lrvfntv3GXdfk3vt7v4xd5/v7ue6+wPlDFpERHqRTsO8edDQUJbDJxNJNu3dxOGOw2U5fiUsW7aMH//4xwCsXr2aq6+++sR7hw4d4rrrrmPx4sWkUil+9KMfAXD//ffz9re/naVLlzJnzhxWrlwJwM0338yRI0dIJpNcc801ALztbW/jvPPOY8GCBdx3330nnfvTn/40ixYtYsmSJezcubPovhRShS4iIlGQycAll5Tt8KlEim7v5tmdz3J+Y88PIxXupp/eVPKRfDKR5K6ldw3Y7qqrruK2227jiiuuoKWlheuuu44nnngCgNtvv52LL76YVatWsX//fhYvXsyll14KQCaTIZ1OM3LkSM455xw+8pGPcMcdd/C1r32NTOa1vqxatYoJEyZw5MgR/viP/5grr7ySiRMncujQIZYsWcLtt9/OypUr+eY3v8ktt9xSVJ+1lKqISBzs2gUvv1yWArZAUMgW5fvgTU1NbNmyhdWrV7Ns2bKT3vvZz37GHXfcQTKZ5MILL+To0aP8/ve/B+CSSy5h3LhxNDQ0MH/+fF566aVej3/33XefGGVv3bqV559/HoARI0acuNd+3nnnsWXLlqL7ohG4iEgclLGALTBj3AxOazhtyB8lCxQyUi6n5cuX84lPfILHH3+cvXtfK9dydx566CHOOeeck9o/+eSTjBw58sR2bW0tnZ2drzvu448/zmOPPcZvfvMbRo8efeKXAID6+voTVeZ9ff9gaQQuIhIHwTTuokVlO4WZkUwkyezMlO0clXDdddfx2c9+lnPPPfek/W95y1v46le/euKxqen0wL+o1NfX09HRAcCBAwc47bTTGD16NBs3buS3v/1t6YPPowQuIhIH6TSceSZMmFDW06QSKVp2ttDZXfwIMiyNjY3ceOONr9t/66230tHRQVNTEwsWLODWW28d8Fg33HADTU1NXHPNNSxdupTOzk7mzZvHzTffzJIlS8oR/gkW1gPam5ubfe3ataGcW0QkdubOzVagP/xwWU/z3Zbv8p6H30Prf2tl/uT5BX/fhg0bmDdvXhkji4c+/p56XeFFI3ARkag7eBCee66sBWyBE4VsRd4Hl+IpgYuIRF1LC7iXtYAtMHfSXEbWjox0JXpcKIGLiERdUMBWgRF4XU0d5045N9IrssWFEriISNSl09nitenTB25bAqlEivSONGHVUEmWEriISNQFjxCt0NO+UokUrxx5hfY/tFfkfNI7JXARkSjr6IBnn63I9HkgDiuyxYESuIhIlG3cCMeOVaSALdA0pQnDIleJXo7HifamHI8O7Y0SuIhIlFWwgC1wyohTOHvi2ZFbka0cjxMNkxK4iEiUpdPZx4f2WL+73FJTU5EbgUP/jxN96qmnuOCCC0ilUrzxjW9k06ZNALS2trJ48WKSySRNTU0nHlDS36NDAfbs2cMFF1xw4nylpoeZiIhEWSYDTU1QV9nLeSqR4oF1D7DvyD5OG3Xa4L75pptemzkolWQS7rprwGb9PU507ty5PPHEE9TV1fHYY4/xqU99ioceeoivf/3rfPSjH+Waa67h+PHjdHV1AX0/OhRg586dLF++nM9//vNcdtllpe1rjhK4iEhUuWdH4O96V8VPHRSyZXZkuGjWRRU//1D19zjRAwcO8L73vY/nn38eMzvxkJILLriA22+/nfb2dt7+9rczZ84cIPvo0IdzS9cGjw6dOHEiHR0dXHLJJdxzzz28+c1vLltflMBFRKLqpZdg//6KFrAF8ivRB53ACxgpl1NfjxO99dZbueiii3j44YfZsmULF154IQDvfve7Of/88/nxj3/MsmXL+MY3vkFNTU2fjw6tq6vjvPPO49FHHy1rAtc9cBGRqAqhgC1w+imnc8bYMyK5IltfjxM9cODAiaK2+++//8T+zZs384Y3vIEbb7yRFStW0NLS0u+jQ82MVatWsXHjRu68886y9UMJXEQkqtJpqKnJ3gMPQbAiW9T09TjRlStX8slPfpJUKkVn52uPS33wwQdZuHAhyWSSdevW8d73vnfAR4fW1tayevVqfvGLX3DvvfeWpR96nKiISFStWAHPPw/r14dy+lt/cStf/NUXOfipgzTUNfTbVo8TLUzJHydqZkvNbJOZtZnZzf20u9LM3MyaCw9XRESGJJ0OZfo8kEwk6fIu1u1aF1oMw9mACdzMaoF7gMuB+cDVZva6p7ib2Vjgo8CTpQ5SRER62LsXtm4NpYAtkJqaPXcU74PHQSEj8MVAm7tvdvfjwAPAil7a/S/gTuBoCeMTEZHehFjAFpg5fianjjw1kgu6xEEhCXwasDVvuz237wQz+yNgurv3u9yMmd1gZmvNbO3u3bsHHayIiOSkc0kzxAReYzUkE8mCC9n0+NH+Dfbvp+gqdDOrAb4MfHygtu5+n7s3u3vz5MmTiz21iMjwlcnAtGkQ8rU0OSVJy84Wurq7+m3X0NDA3r17lcT74O7s3buXhob+iwHzFbKQyzYg/ynxjbl9gbHAQuBxyz6LNgGsMbPl7q4ycxGRckinQ73/HUhNTXHoqUO0vdLGOZP6Xo+9sbGR9vZ2NPvat4aGBhobGwtuX0gCfxqYY2azyCbuq4B3B2+6+wFgUrBtZo8Dn1DyFhEpkyNHso8RvfLKsCMhlXitkK2/BF5fX8+sWbMqFdawMOAUurt3Ah8GHgU2AA+6e6uZ3WZmy8sdoIiI9PDss9DdHer978C8yfOor6mP5IIuUVfQWuju/gjwSI99n+mj7YXFhyUiIn0KCtiqYAp9RO0IFp6+UAk8BFpKVUQkajIZGDcOZs4MOxIgu6BLentaBWoVpgQuIhI1wQps1usKmxWXSqTYfXg32w9uDzuUYUUJXEQkSrq6oKWlKqbPA1qRLRxK4CIiUfLcc9kq9CooYAs0Tck+DU0rslWWEriISJRUUQFb4NSRpzJ7wmwVslWYEriISJRkMjBiBFTZozmTiaSm0CtMCVxEJErSaVi4EOrrw47kJKlEihf2vcCBowfCDmXYUAIXEYkK9+wIvIqmzwPBimwtO1tCjmT4UAIXEYmKbdtgz56qKmALJBNJAN0HryAlcBGRqKjCArbA1LFTmXLKFCXwClICFxGJikwmu3hLU1PYkfRKhWyVpQQuIhIV6TTMng1jx4YdSa9SiRStu1o53nU87FCGBSVwEZGoqNICtkBqaoqO7g7W714fdijDghK4iEgU7N8PL75YlQVsgROFbFqRrSKUwEVEouCZZ7Jfq3gEPnvCbE6pP0X3wStECVxEJAqCCvQqHoHXWA2LEotUiV4hSuAiIlGQTkMikf1TxVKJFJkdGbq9O+xQYk8JXEQkCqq8gC2QSqR49firvLjvxbBDiT0lcBGRanfsGKxfX9XT5wGtyFY5SuAiItWutRU6OyMxAl9w+gLqaupUyFYBBSVwM1tqZpvMrM3Mbu7l/Y+Z2XozazGz/2dmZ5Y+VBGRYSoCBWyBhroG5k2apxF4BQyYwM2sFrgHuByYD1xtZvN7NEsDze7eBPwA+OtSByoiMmyl0zBmDJx1VtiRFCQ1NaXPgldAISPwxUCbu2929+PAA8CK/Abu/kt3P5zb/C3QWNowRUSGsUwGFi2Cmmjc9UxOSbL94HZ2HtwZdiixVsi/hmnA1rzt9ty+vlwP/KS3N8zsBjNba2Zrd+/eXXiUIiLDVXd3dhGXCNz/DqSmZmPVffDyKumvc2Z2LdAMfKm39939PndvdvfmyZMnl/LUIiLx9MILcPBgpBJ4UImuBF5edQW02QZMz9tuzO07iZldCnwaeLO7HytNeCIiw1yECtgC4xvGM3P8TBWylVkhI/CngTlmNsvMRgBXAWvyG5hZCvgGsNzdd5U+TBGRYSqdhro6WLAg7EgGJZVIKYGX2YAJ3N07gQ8DjwIbgAfdvdXMbjOz5blmXwLGAP/XzDJmtqaPw4mIyGBkMjB/PowcGXYkg5JMJHl+7/McPH4w7FBiq5ApdNz9EeCRHvs+k/f60hLHJSIikB2BL10adhSDlkqkcJyWnS28cfobww4nlqLxmQQRkeFoxw7YuTNSBWwBVaKXnxK4iEi1imABW2Da2GlMHDVRC7qUkRK4iEi1inACN7PsimwqZCsbJXARkWqVycCsWTBuXNiRDElySpJ1u9bR0dURdiixpAQuIlKt0ulI3v8OpKamONZ1jI17NoYdSiwpgYuIVKNXX4W2tmgn8IQK2cpJCVxEpBo980z2awTvfwfOnng2o+pG6T54mSiBi4hUo0wm+zXCI/DamlqapjRpBF4mSuAiItUonYZJk+CMM8KOpCjJRJL0jjTuHnYosaMELiJSjYICNrOwIylKKpFi/9H9vHTgpbBDiR0lcBGRanP8OLS2Rnr6PKAV2cpHCVxEpNps2JBN4hEuYAssPH0hNVajFdnKQAlcRKTaxKCALTC6fjRzJ80lszMTdiixowQuIlJt0mkYPRrmzAk7kpJIJpIagZeBEriISLVJp6GpCWprw46kJFKJFFv/sJW9h/eGHUqsKIGLiFQT9+wUegymzwNaka08lMBFRKrJiy/CH/4QiwK2QDKRBNCKbCWmBC4iUk1iVMAWmDh6ItNPna4ReIkpgYuIVJN0Onvve+HCsCMpqWBFNikdJXARkWqSTsPcuTBqVNiRlFQqkWLjno0c7jgcdiixUVACN7OlZrbJzNrM7OZe3h9pZt/Pvf+kmc0seaQiIsNBJhOr+9+BZCJJt3ezbte6sEOJjQETuJnVAvcAlwPzgavNbH6PZtcD+9x9NvAV4M5SByoiEnu7d8O2bbG6/x0IllTV58FLp66ANouBNnffDGBmDwArgPV5bVYAn8u9/gHwNTMzr+TjZ379azhwoGKnExEpuWefzX6NYQI/c9yZjG8YzyNtjzBj3IywwymbcyadwxtOe0NFzlVIAp8GbM3bbgfO76uNu3ea2QFgIrAnv5GZ3QDcADBjRol/gDfdBE8/XdpjiohU2ogRsZxCNzOWNC5hzaY1rNm0JuxwyubOS+9k5ZtWVuRchSTwknH3+4D7AJqbm0s7Ol+1Cg4dKukhRUQqbvJkmDAh7CjKYvWVq9m0Z1PYYZTV9HHTK3auQhL4NiA/osbcvt7atJtZHTAOqOyaeTH7yIWISNyMbxjP+Y09J3BlqAqpQn8amGNms8xsBHAV0HP+Yw3wvtzrdwC/qOj9bxERkWFmwBF47p72h4FHgVpglbu3mtltwFp3XwN8C/gHM2sDXiGb5EVERKRMLKyBcnNzs69duzaUc4uIiESI9bZTK7GJiIhEkBK4iIhIBIU2hW5mu4GXSnzYSfT47HnMxLl/ce4bqH9RFue+gfoXBXvcfWnPnaEl8HIws7Xu3hx2HOUS5/7FuW+g/kVZnPsG6l+UaQpdREQkgpTARUREIihuCfy+sAMoszj3L859A/UvyuLcN1D/IitW98BFRESGi7iNwEVERIYFJXAREZEIimQCN7MGM3vKzJ4xs1Yz+5+5/bPM7EkzazOz7+cevhI5/fTve2a2yczWmdkqM6sPO9ah6Kt/ee/fbWYHw4qvGP387MzMbjez58xsg5ndGHasQ9FP/y4xs383s4yZ/crMZocdazHMrNbM0mb2L7ntWFxboNe+xeK6EujZv7z9kb2u9CWSCRw4Blzs7ouAJLDUzJYAdwJfcffZwD7g+vBCLEpf/fseMBc4FxgFfDC0CIvTV/8ws2bgtBBjK1ZffXs/2UfuznX3ecADoUVYnL7697fANe6eBP4RuCW0CEvjo8CGvO24XFvg9X2Ly3Ul0LN/cbiu9CqSCdyzgt+k6nN/HLgY+EFu/7eBt1U+uuL11T93fyT3ngNPkX02e+T01T8zqwW+BKwMLbgi9fNv8y+A29y9O9duV0ghFqWf/jlwam7/OODlEMIrCTNrBP4M+LvcthGTa0vPvgHE5boCvfcvDteVvkQygcOJaZIMsAv4OfACsN/dO3NN2oFpIYVXtJ79c/cn896rB94D/DSk8IrWR/8+DKxx9+2hBlekPvp2FvBfzWytmf3EzOaEGmQR+ujfB4FHzKyd7L/NO0IMsVh3kb3Yd+e2JxKfa8tdnNy3E+JwXaH3/sXiutKbyCZwd+/KTdc1AovJTgHFRs/+mdnCvLfvBf7V3Z8IJbgS6KV//wl4J/DVUAMrgT5+diOBo7klHb8JrAoxxKL00b+/BJa5eyPw98CXQwxxyMzsCmCXu/8u7FhKrYC+Rfq60lv/zOwMYnJd6U1d2AEUy933m9kvgQuA8WZWl/tNuRHYFm50xcvr31JgnZl9FpgMfCjcyEojr38XAbOBtuyMJaPNrC13zzGSevzs2oF/yr31MNkkF2l5/bscWJQ3S/R9ojuKexOw3MyWAQ1kbwv8H+JxbXld38zsu+5+bUyuK7397FrJ1m3E5rqSL5IjcDObbGbjc69HAZeRLVr4JfCOXLP3AT8KJcAi9dG/jWb2QeAtwNXBvdQo6qN/v3P3hLvPdPeZwOEo/ifr62cH/JDsLykAbwaeCyO+YvXzf2+cmZ2daxbsixx3/6S7N+b+DV4F/MLdryEG15Y++nZtXK4rffTvtDhcV/oS1RH4VODbueKEGuBBd/8XM1sPPGBmnwfSwLfCDLIIffWvk+wjWH+T+23yn9z9thDjHKpe+xdyTKXS18/uV8D3zOwvgYNEt9K3r/79OfCQmXWTrdK+Lswgy+B/EI9rS2++TjyuK8OOllIVERGJoEhOoYuIiAx3SuAiIiIRpAQuIiISQUrgIiIiEaQELiIiEkFK4CIiIhGkBC4iIhJB/wEUQV4axnZzlQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 504x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x_keliling = RangeSubjektif(min_keliling , max_keliling , 1)\n",
"r_keliling = np.array([\n",
" [min_keliling,min_keliling,mid_keliling,mid_keliling],\n",
" [mid_keliling,mid_keliling,max_keliling,max_keliling]\n",
"])\n",
"\n",
"lo_keliling , hi_keliling = FuzzyShow(r_keliling , x_keliling, 'Keliling (cm)')"
]
},
{
"cell_type": "code",
"execution_count": 384,
"id": "deeec0dc",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzC0lEQVR4nO3deZyN5f/H8dfHLHZCimxFkmXGjBnD4IsQYy/J15Z9/dZP6ispabH0TRsRY2uSiBDZsu87w5gZREnKkH3Lbsb1++M+dNIwB2fmPmfm83w8PJz7Pve57/flzPGZ+z7XdV9ijEEppZRS3iWT3QGUUkopdfe0gCullFJeSAu4Ukop5YW0gCullFJeSAu4Ukop5YW0gCullFJeSAu4Ul5IRDqIyDqn5fMiUtzxeKKIDHY8/peI7E3FHN1FZHgq7HeLiJR1936VSk+0gCtlIxE5ICJ1nJZbishpEalxN/sxxuQwxuxPZv1aY0wpd2S9lYj4A28BH6XC7j8GBqbCfpVKN7SAK+UhRKQ9MApoaIxZbXceFzQF9hhjDqXCvucCT4lIgVTYt1LpghZwpTyAiHQHPgHqGWM2ONblFpEvROQPETkkIoNFxOc2rzci8ngy62uKSILT8gER6SMicSJyVkS+FZEsTs/3dRzvsIh0ud1+HeoDf/tFQ0SqicgGETkjIgdFpINj/UQRGS0iCx2X+9eLSAERGe644rBHRIJv7McYcxnYBtRz8Z9QqQxHC7hS9uuJdbm4tjEm2mn9RCAReBwIBuoCXdxwvBZABPAYEAh0ABCRCOBVoI7jmDVT2E8AcPP7dREpBiwERgL5gSBgxy3HfQt4ELgCbAS2O5ZnAp/esv8fgfJ30zClMhIt4ErZ72lgExB/Y4WIPAw0AHobYy4YY44Bw4CWbjjeCGPMYWPMKWAeVqEFq8B+aYzZZYy5CLybwn4eAP50Wm4NLDPGTDXGXDPGnDTG7HB6frYxZpvj7Ho2cNkYM8kYkwR8i/VLirM/HcdQSiVDC7hS9usJPAFMEBFxrCsG+AF/OC5HnwHGAg+54XhHnB5fBHI4Hj8CHHR6zvlxck4DOZ2WiwC/3GH7o06PLyWznOPvm5MTOJNCBqUyLC3gStnvKFAb+Bcw2rHuINZl5geNMQ84/uQyxqTm0Ko/gMJOy0VS2D4O6xePGw4CJdyYpzQQ68b9KZWuaAFXygMYYw5jFfEIERlmjPkDWAJ8IiK5RCSTiJS42+Fld2k60FFESotINmBACtv/ADjnmQLUEZEWIuIrIvlEJOhegjg61oUAS+/l9UplBFrAlfIQxpjfgVpAcxH5H9AO8Ad2Y12ungkUTMXjLwRGACuBfVjfy4N1JSA584AnReQRp/wNgP8Cp7A6sN1rJ7TGwCrHLzZKqWSIMcbuDEopDyQipYGdQGZjTOJttukGlDHG9HbzsTcDnY0xO925X6XSEy3gSqmbRORZrEvj2YCvgOvGmGdsDaWUSpZeQldKOesOHMPqTZ6E1UNeKeWB9AxcKaWU8kJ6Bq6UUkp5IV+7DhwREWEWLVpk1+GVUkopbyHJrbTtDPzEiRN2HVoppZTyenoJXSmllPJCWsCVUkopL6QFXCmllPJCKRZwEYkSkWMikuwdkcQyQkT2iUiciFRwf0yllFJKOXOlF/pE4HNg0m2erw+UdPypBEQ6/k5TSdeT0vqQSqU7Ppl87I6glPc6cgTy5weftPkcpVjAjTFrROTRO2zSFJhkrDvCbBKRB0SkoGM2pTQT/kU4Ww9vTctDKpXuNCzZkPGNx1MwZ6rNmaJU+jRjBnTvDm+8Aa+9liaHdMc48EJY8wDfkOBY948C7pj4oBtA0aJF3XDov3QP6U7jJxq7dZ9KZSRnr5xl1NZRBEQGML7xeJ4t/azdkZTyfGfPQq9eMGkShIXBM8+k2aHT9EYuxphxwDiA0NBQt97DtXOFzu7cnVIZUufgzrSd3ZZm05vRObgzw+oNI2fmnHbHUsozrV0LL7wABw/CO+9A//7g55dmh3dHL/RDQBGn5cKOdUopL1M6f2k2dt7IG9XeIComiqCxQWw8uNHuWEp5lqtX4c03oUYN8PWFdevg3XfTtHiDewr4XKCdozd6ZeBsWn//rZRyH38ff96v/T6rO6wm6XoS1b6sxjsr3+Fa0jW7oyllvz17IDwc/vc/6NQJYmKsZRu4MoxsKrARKCUiCSLSWUR6iEgPxyY/APuBfcB44D+pllYplWb+VexfxPaIpU1AGwauGUi1L6vx88mf7Y6llD2MgVGjoEIF+O03mD0bJkyAnPZ9xWTbdKKhoaEmOjralmMrpe7O9F3T6TG/B1eSrjC83nC6VOiCSLLzKyiV/hw5Yp1tL1wIEREQFQUF03SkhmdNZqKU8h4tyrYgrmcc4YXD6Ta/G898+wzHLhyzO5ZSqW/OHAgIgJUr4fPP4Ycf0rp435YWcKWUSwrnKsySF5bwad1PWbRvEQGRASz4aYHdsZRKHefPQ9eu1rCwIkVg+3Z48UXwoCtPWsCVUi7LJJl4JfwVortG83D2h2k0tRH/WfAfLl67aHc0pdxn0yYICoIvvoB+/azl0qXtTvUPWsCVUnct4OEAtnTdwquVXyUyOpIKYysQfVj7tCgvl5hoDQerVs16vGqV1dvc39/uZMnSAq6UuidZfLPwSb1PWPbCMs5fPU/4F+G8v/Z9nZdAead9+6zC/d570Lo1xMZC9ep2p7ojLeBKqftSu3ht4nrG0ax0M/qv6E+NiTX49fSvdsdSyjXGWMPBgoJg716YNs26LWru3HYnS5EWcKXUfcubNS/TnpvG189+TfyxeMqPKc9XO77CrmGqSrnk+HF49lmrs1rlyhAfD//+t92pXKYFXCnlFiJC28C2xPWII7hgMB3mdKDFzBacvHjS7mhK/dPChdbwsIUL4dNPYckSKFzY7lR3RQu4Usqtij1QjBXtVvBB7Q+Ys2cOgWMCWfrLUrtjKWW5eNEaDtagATz0EGzdCq+8Apm8rxx6X2KllMfzyeTD69VeZ1OXTeTOnJu6k+vSe1FvLl27ZHc0lZFt22bdCnX0aHj1VdiyBQID7U51z7SAK6VSTYWCFdjWbRsvVXyJzzZ/RsXxFYk9Emt3LJXRJCVZw8EqV7Zu0LJsGXzyCWTJYney+6IFXCmVqrL6ZWVkg5H80PoHTl46SdiEMD7e8DHXzXW7o6mM4MABqFnTmv6zWTOIi4Pate1O5RZawJVSaaJ+yfrE94ynQckGvLb0NepMqsPBswftjqXSK2Pg66+tS+RxcdbjadMgb167k7mNFnClVJp5MNuDzGoxiy+afMGWQ1sIiAxg2s5pdsdS6c2pU9ZwsHbtrPHdsbHQtq1H3cfcHbSAK6XSlIjQKbgTsT1iKZ2/NK2+a0WbWW04c/mM3dFUerBsmTU8bPZs63vvlSvh0UftTpUqtIArpWxRIm8J1nZcy8CaA/l257cERgay6sAqu2Mpb3X5stWz/OmnIVcu2LzZmojEx8fuZKlGC7hSyja+mXwZUGMA6zutJ7NvZmp9VYvXl77OlcQrdkdT3iQuDipWhGHD4KWX/houls5pAVdK2a5S4UrEdI+ha4WufLjhQypNqMSuY7vsjqU83fXr1nCwihXhxAn44QcYORKyZbM7WZrQAq6U8gg5/HMwtvFY5rScw6E/DxEyLoQRm0focDOVvIMHoU4d6NPHuqtaXBzUr293qjSlBVwp5VGalGpCfM94ahevzcuLXqb+lPoc/vOw3bGUJ/n2W2t42JYt1kxis2ZB/vx2p0pzLhVwEYkQkb0isk9E+iXzfFERWSkiMSISJyIN3B9VKZVRFMhRgPmt5hPZMJK1v60lIDKAWT/OsjuWstvZs/DCC9CyJTz5JOzYAZ07p7vhYa5KsYCLiA8wCqgPlAFaiUiZWzZ7C5hujAkGWgKj3R1UKZWxiAg9QnsQ0z2Gxx54jOemP0fHOR05d+Wc3dGUHVavts66p06F996DtWvh8cftTmUrV87Aw4B9xpj9xpirwDSg6S3bGCCX43FuQK93KaXcotSDpdjYeSP9/9WfSbGTCBoTxPrf19sdS6WVq1et4WBPPQX+/rB+Pbz9Nvj62p3Mdq4U8EKA8/0OExzrnL0LtBWRBOAH4P+S25GIdBORaBGJPn78+D3EVUplRH4+fgyuNZg1HdYAUH1idQasGMC1pGs2J1OpavduqFQJhg6FLl0gJsZaVoD7OrG1AiYaYwoDDYCvReQf+zbGjDPGhBpjQvNnwA4HSqn7U7VoVXb02EG78u0YvHYwVaKq8NPJn+yOpdzNGGs4WEgIJCTAnDkwbhzkyGF3Mo/iSgE/BBRxWi7sWOesMzAdwBizEcgCPOiOgEop5SxX5lx82fRLZjw/g19O/ULw2GDGRo/FGGN3NOUOf/xhDQfr1Qtq1YL4eGjSxO5UHsmVAr4VKCkij4mIP1Yntbm3bPM7UBtAREpjFXC9Rq6USjXNyzQnvmc8VYtUpceCHjSZ1oSj54/aHUvdj9mzrfuYr1kDo0fD/PlQoIDdqTxWigXcGJMIvAQsBn7E6m2+S0QGisiNX4v+C3QVkVhgKtDB6K/DSqlUVihXIRa1XcTwesNZ+stSAiIDmLd3nt2x1N36809rOFizZtbEI9u3Q8+eGXZ4mKvErjobGhpqoqOjbTm2Uir92XlsJ21ntSX2aCzdQ7rzSd1PyO6f3e5YKiUbN1pTfR44AG+8YfUw9/e3O5WnSfY3Gb0Tm1IqXSj3UDk2d9nMa1VeY9y2cQSPDWbroa12x1K3c+2aVayrVbPuab56NQwerMX7LmgBV0qlG5l9M/Ph0x+yvN1yLideJvyLcAatHkTi9US7oylnP/0EVavCoEHWndViY61Cru6KFnClVLrz1GNPEdczjhZlW/D2qrep/mV1fjn1i92xlDHWcLDgYNi3D2bMgIkTrfm71V3TAq6USpceyPIA3zz3DVOaTWH38d0EjQ3iy5gvdbiZXY4dg6ZNoXt3qFLFGh7WvLndqbyaFnClVLrWOqA1cT3jCCkYQqe5nWg+ozknLp6wO1bGsmCBNTxsyRIYPhwWL4ZCt97QU90tLeBKqXSvaO6iLG+3nA/rfMi8vfMIjAxk8b7FdsdK/y5csIaDNWpkjeeOjoaXX4ZMWnrcQf8VlVIZgk8mH16r+hpbum4hT9Y8REyJoNfCXly6dsnuaOlTdDRUqABjx0KfPtbc3eXK2Z0qXdECrpTKUIIKBBHdNZqXK73MyC0jCRkXQswfMXbHSj8SE2HIEAgPh4sXYfly+OgjyJzZ7mTpjhZwpVSGk9UvK8MjhrO47WLOXD5DpQmVGLpuKEnXk+yO5t3274caNeCtt6wOanFx1jSgKlVoAVdKZVh1S9Qlvmc8jUs1pt/yftSaVIvfzvxmdyzvY4w1HKx8edi1C6ZMgalTIU8eu5Ola1rAlVIZWr5s+Zj5/Ey+bPol2//YTuCYQKbETbE7lvc4eRKefx46drSm/4yNhdat7U6VIWgBV0pleCJCh6AOxPaIpdxD5Wg7uy2tvmvF6Uun7Y7m2ZYssYaHzZ0LQ4da33cXK2Z3qgxDC7hSSjkUz1Oc1R1WM/ipwczcPZPAMYGs/HWl3bE8z6VL1nCwevWsy+SbN0PfvuDjY3eyDEULuFJKOfHN5Ev/6v3Z0GkD2fyyUXtSbfos6cOVxCt2R/MMO3ZAaCiMGAG9elnDxYKD7U6VIWkBV0qpZFQsVJHt3bZbU5Nu/ISwCWHsPLbT7lj2SUqyhoOFhcHp07BoEXz2GWTNaneyDEsLuFJK3UZ2/+xENopkXqt5HDl/hNBxoQzfNJzr5rrd0dLW779DnTrWZfLGja37mNerZ3eqDE8LuFJKpaDRE42I7xlP3RJ1eWXxK9SbXI9D5w7ZHSttTJ0KgYHWpfKoKJg5E/LlszuVQgu4Ukq55KHsDzGn5RzGNhrLhoMbCIgMYObumXbHSj1nzljDwVq3hrJlreFhHTuCiN3JlIMWcKWUcpGI0C2kGzHdY3g87+M8P+N52n/fnnNXztkdzb1WrbLOuqdPh0GDYPVqKF7c7lTqFlrAlVLqLj2R7wnWd1rPgOoDmBw3mfJjyrPu93V2x7p/V65Y33PXqgVZssCGDdZtUX197U6mkuFSAReRCBHZKyL7RKTfbbZpISK7RWSXiHzj3phKKeVZ/Hz8GPjUQNZ2XEsmyUSNiTXov7w/V5Ou2h3t3uzaBZUqWT3Nu3eHmBirx7nyWCkWcBHxAUYB9YEyQCsRKXPLNiWBN4CqxpiyQG/3R1VKKc9TpUgVdnTfQYfyHXh/3ftU+aIKe07ssTuW665ft4aDhYTA4cPWXdUiIyF7druTqRS4cl0kDNhnjNkPICLTgKbAbqdtugKjjDGnAYwxx9wdVCmlPFXOzDn5oukXNHyiId3mdaPC2Ap8XPdjeob2RDy509fhw9ChAyxdCo0awYQJ8PDDqXKoa9eukZCQwOXLl1Nl/+lBlixZKFy4MH5+fi5t70oBLwQcdFpOACrdss0TACKyHvAB3jXGLLp1RyLSDegGULRoUZcCKqWUt2hWuhnhhcPpOKcjL/7wIvN/mk9U0ygK5Chgd7R/+u476NYNLl+GMWOsx6n4y0ZCQgI5c+bk0Ucf9exfamxijOHkyZMkJCTw2GOPufQad3Vi8wVKAjWBVsB4EXkgmYDjjDGhxpjQ/Pnzu+nQSinlOQrmLMjCNgsZWX8kKw+sJCAygDl75tgd6y/nzlnDwZo3hxIlrO+6u3dP9eFhly9fJl++fFq8b0NEyJcv311doXClgB8CijgtF3asc5YAzDXGXDPG/Ar8hFXQlVIqwxERXgp7iW3dtlE4V2Ge+fYZus3rxvmr5+0Ntn49BAXBpEkwYIC1/MQTaXZ4Ld53drf/Pq4U8K1ASRF5TET8gZbA3Fu2+R7r7BsReRDrkvr+u0qilFLpTJn8ZdjcZTOvV32dCdsnEDw2mM0Jm9M+yLVr1nCw6tWt5bVrYeBAcPG71vRCRGjbtu3N5cTERPLnz0+jRo3ueZ/vv/++S9vlyJHjno9xOykWcGNMIvASsBj4EZhujNklIgNFpIljs8XASRHZDawEXjPGnHR7WqWU8jL+Pv58UOcDVrZfydWkq1SNqsp7q94j8Xpi2gTYuxeqVIEhQ6B9e+uOalWqpM2xPUz27NnZuXMnly5dAmDp0qUUKlTovvbpagFPDS59B26M+cEY84QxpoQxZohj3dvGmLmOx8YY86oxpowxJsAYMy01QyullLep8WgN4nrE0SqgFe+ufpdqUdXYd2pf6h3QGGs4WHAw7N9vdVqLioKcOVPvmF6gQYMGLFiwAICpU6fSqlWrm89duHCBTp06ERYWRnBwMHPmWH0XJk6cSLNmzYiIiKBkyZL07dsXgH79+nHp0iWCgoJo06YNAM888wwhISGULVuWcePG/e3Y/fv3p3z58lSuXJmjR4/ed1vEGHPfO7kXoaGhJjo62pZjK6WUnabtnEbPBT25lnSNzyI+o1NwJ/d+P3z0KHTuDAsWQN268OWX8Mgj7tv/Pfjxxx8pXbo0AL0X9WbHkR1u3X9QgSCGRwy/4zY5cuRgw4YNDBw4kMmTJ1O5cmWGDx/Oxx9/zPz583nzzTcpU6YMbdu25cyZM4SFhRETE8OMGTMYOHAgMTExZM6cmVKlSrFu3TqKFClCjhw5OH/+r74Np06dIm/evFy6dImKFSuyevXqm5335s6dS+PGjenbty+5cuXirbfe+kdG538nJ8n+cOitVJVSKo21LNeSuB5xhBUKo8u8LjSb3ozjF467Z+fz5kFAACxfDiNGwMKFthdvTxIYGMiBAweYOnUqDRo0+NtzS5Ys4YMPPiAoKIiaNWty+fJlfv/9dwBq165N7ty5yZIlC2XKlOG3335Ldv8jRoy4eZZ98OBBfv75ZwD8/f1vftceEhLCgQMH7rsteoNbpZSyQZHcRVjWbhnDNg7jzRVvEhAZwJdNv6R+yfr3tsMLF+DVV2HcOKun+eTJ1ixiHiilM+XU1qRJE/r06cOqVas4efKv7lrGGL777jtKlSr1t+03b95M5syZby77+PiQmPjPPgyrVq1i2bJlbNy4kWzZst38JQDAz8/v5lWW273+bukZuFJK2SSTZOK/Vf7L1q5byZ89Pw2+acBLP7zExWsX725HW7ZY33WPH29NRrJpk8cWb0/QqVMn3nnnHQICAv62vl69eowcOZIbXy3HxMSkuC8/Pz+uXbsGwNmzZ8mTJw/ZsmVjz549bNq0yf3hnWgBV0opmwU+HMjWrlt5pfIrjNo6ipBxIWz/Y3vKL0xMtIaDValizSS2ciUMHQpOZ4vqnwoXLkyvXr3+sX7AgAFcu3aNwMBAypYty4ABA1LcV7du3QgMDKRNmzZERESQmJhI6dKl6devH5UrV06N+DdpJzallPIgy/Yvo/337Tl24RgDaw6kb9W++GTy+eeGv/wCbdtaZ9tt2sDnn8MDD6R5XlfdpnOWuoV2YlNKKS9Vp3gd4nvG88yTz/Dmijep+VVNDpw58NcGxljDwYKC4Mcf4ZtvrO+7Pbh4q9ShBVwppTxM3qx5md58Ol898xWxR2IJjAzk69ivMcePw3PPWUPEKlaE+HhwGsesMhYt4Eop5YFEhHbl2xHXM47yBcoz+eN2nHmiKGb+fPjoI1i2DIoUSXlHKt3SAq6UUh7s0cwPs3pbeRZPhkP+l6nbKw/LmwVDJv3vO6PTnwCllPJUMTEQEkKmUaOgd2+ublzPwUfzUOfrOry6+FUuJ7o+9aRKf7SAK6WUp0lKsoaDVaoEZ8/CkiUwbBgVildhe/ftvFjxRYZtGkbF8RWJOxpnd1plEy3gSinlSX77DWrVgn79oGlTq6Pa00/ffDqbXzY+b/A5C1ov4PiF41QcX5FPN37KdXPdxtDeITWmE01Oakwdmhwt4Eop5QmMsYaDBQZal86/+gqmT4e8eZPdvEHJBsT3jKf+4/X575L/8vTXT5NwLiGNQ3uX1JhO1E5awJVSym6nT1vDwV54wZqIJDYW2rWDFGYoy589P7P/PZvxjcezOWEzAZEBTN81PY1Ce6c7TSe6ZcsWwsPDCQ4OpkqVKuzduxeAXbt2ERYWRlBQEIGBgTcnKLnT1KEAJ06cIDw8/Obx3E0nM1FKKTutWAHt28ORIzBkCLz+Ovgkc+e12xARulToQs1Ha9J2Vlv+PfPfzPtpHp/X/5zcWXKnYvD70Ls37Njh3n0GBcHw4Slu1rJlSwYOHEijRo2Ii4ujU6dOrF27FoAnn3yStWvX4uvry7Jly3jzzTf57rvvGDNmDC+//DJt2rTh6tWrJCUlARAVFfW3qUOfe+458uXLB8DRo0dp0qQJgwcP5mmnr0DcSQu4UkrZ4coV6N8fPvkESpWCjRshNPSed/d43sdZ12kdQ9YMYdCaQaz5bQ1fP/s11YtVd2No73en6UTPnj1L+/bt+fnnnxGRm5OUhIeHM2TIEBISEmjWrBklS5YErKlDZ8+eDXBz6tB8+fJx7do1ateuzahRo6hRo0aqtUULuFJKpbX4eOv+5fHx8J//WDdmyZbtvnfrm8mXd2q+Q73H69F2VltqTqzJ61Vf572n3sPfx98Nwd3EhTPl1HS76UQHDBjAU089xezZszlw4AA1a9YEoHXr1lSqVIkFCxbQoEEDxo4dS6ZMmW47daivry8hISEsXrw4VQu4fgeulFJp5fp1GDbMug3q0aMwfz6MGuWW4u2scuHK7Oixg87Bnflg/QdUnlCZH4//6NZjeLPbTSd69uzZm53aJk6ceHP9/v37KV68OL169aJp06bExcXdcepQESEqKoo9e/YwdOjQVGuHFnCllEoLCQlQty68+irUq2edfTdsmGqHy+Gfg/FNxvP9v7/n4LmDVBhXgc+3fI5dM1B6kttNJ9q3b1/eeOMNgoODSUxMvLl++vTplCtXjqCgIHbu3Em7du1SnDrUx8eHqVOnsmLFCkaPHp0q7dDpRJVSKrXNmAHdu1vfew8fDl26pNjD3J2OnD9CpzmdWLhvIRGPRxDVJIqCOQum2fFBpxN1ldunExWRCBHZKyL7RKTfHbZ7TkSMiNx7TwyllEovzp61epi3aAElS1o9r7t2TdPiDVAgRwEWtF7AqAajWHVgFQGRAcz+cXaaZlDul2IBFxEfYBRQHygDtBKRMslslxN4Gdjs7pBKKeV11q6F8uWtm7O88w6sW2cVcZuICP+p+B+2d9tOsQeK0Wx6M7rM7cKfV/60LZO6P66cgYcB+4wx+40xV4FpQNNkthsEDAX07vpKqYzr6lV4802oUQN8fa3C/e674OdndzIASucvzcbOG3mj2htExUQRNDaIjQc32h1L3QNXCngh4KDTcoJj3U0iUgEoYoy54+1mRKSbiESLSPTx48fvOqxSSnm0PXsgPBz+9z/o1Mm6JWp4uN2p/sHfx5/3a7/P6g6rSbqeRLUvq/HOyne4lnQtVY+rHeju7G7/fe67F7qIZAI+Bf6b0rbGmHHGmFBjTGj+/Pnv99BKKeUZjLGGg1WoYE1GMns2TJgAOXPaneyO/lXsX8T2iKVtYFsGrhlItS+r8fPJn1PlWFmyZOHkyZNaxG/DGMPJkyfJkiWLy69x5UYuh4AiTsuFHetuyAmUA1aJ1TGjADBXRJoYY7SbuVIqfTtyxDrbXrgQIiIgKgoKpm0P7/uRO0tuvnrmKxqWbEiP+T0IGhvEsHrD6FqhK+LGznaFCxcmISEBvfp6e1myZKFw4cIub5/iMDIR8QV+AmpjFe6tQGtjzK7bbL8K6JNS8dZhZEoprzdnjjUk7Px5+Phj665qadzD3J0OnTtEhzkdWLZ/GY2faMyEJhN4KPtDdsdS9zqMzBiTCLwELAZ+BKYbY3aJyEARaeLejEop5QXOn7eGgz3zDBQtCtu3w4svenXxBiiUqxCL2y5mWL1hLPllCQGRASz4KXVm0lL3T2/kopRSd2PTJmjbFvbvt2YOe+898Peg+4y7SfzReNrMakP8sXh6hvbk47ofk83Pvbd8VS679xu5KKVUhpeYaA0Hq1bNerxqldXbPB0Wb4CAhwPY0nUL/w3/L5HRkVQYW4How3rS5Um0gCulVEr27bMK93vvQevWEBsL1dP/NJ1ZfLPwcd2PWd5uOeevnif8i3CGrBlC0vUku6MptIArpdTtGWMNBwsKgr17Ydo0mDQJcue2O1maqvVYLeJ7xvNc6ed4a+Vb1JhYg19P/2p3rAxPC7hSSiXn+HF49lmrs1rlytbsYf/+t92pbJMnax6mPjeVyc9OJv5YPOXHlOerHV/puG4baQFXSqlbLVwIAQHW359+CkuWwF2Mz02vRIQ2gW2I6xFHcMFgOszpQIuZLTh58aTd0TIkLeBKKXXDxYvWcLAGDeChhyA6Gl55BTLpf5XOij1QjBXtVjC0zlDm7JlD4JhAlv6y1O5YGY7+VCqlFMC2bdatUEePhldfhS1brLNwlSyfTD70rdqXzV02kztzbupOrkvvRb25dO2S3dEyDC3gSqmMLSnJGg5WubJ1g5Zly+CTT+Au7kmdkQUXDGZbt238X9j/8dnmz6g4viKxR2LtjpUhaAFXSmVcBw5AzZrW9J/NmkFcHNSubXcqr5PVLysj6o9gYZuFnLx0krAJYXy84WOum+t2R0vXtIArpTIeY6zhYIGBVtH++mtriFjevHYn82oRj0cQ3zOehiUb8trS16g9qTYHzx5M+YXqnmgBV0plLKdOWcPB2re3xnfHxlq3RvXy+5h7igezPch3Lb4jqkkU0YejCYgMYGr8VLtjpUtawJVSGceyZVbHtO+/t773XrkSHn3U7lTpjojQMbgjO7rvoEz+MrSe1Zo2s9pw5vIZu6OlK1rAlVLp3+XLVs/yp5+GXLmsCUn69QMfH7uTpWsl8pZgTcc1DKw5kG93fktgZCCrDqyyO1a6oQVcKZW+xcVBxYowbBi89NJfw8VUmvDN5MuAGgPY0HkDmX0zU+urWry+9HWuJF6xO5rX0wKulEqfrl+3hoNVrAgnTsAPP8DIkZBNp8S0Q1ihMGK6x9C1Qlc+3PAhlSZUYtexXXbH8mpawJVS6c/Bg1CnDvTpY91VLS4O6te3O1WGl8M/B2Mbj2Vuy7kc/vMwIeNCGLF5hA43u0dawJVS6cu0adbwsC1brJnEZs2C/PntTqWcNC7VmPie8dQpXoeXF71M/Sn1OfznYbtjeR0t4Eqp9OHMGWs4WKtW8OST1vCwzp11eJiHejjHw8xrNY/IhpGs/W0tAZEBfLf7O7tjeRUt4Eop77d6NZQvb519v/cerF0LJUrYnUqlQEToEdqDmO4xFM9TnOYzmtNxTkfOXTlndzSvoAVcKeW9rl61hoM99RT4+8P69fD22+Dra3cydRdKPViKDZ028Na/3mJS7CSCxgSx/vf1dsfyeC4VcBGJEJG9IrJPRPol8/yrIrJbROJEZLmIFHN/VKWUcrJ7N1SqBEOHQpcuEBNjLSuv5Ofjx6Bag1jTYQ0A1SdWZ8CKAVxLumZzMs+VYgEXER9gFFAfKAO0EpEyt2wWA4QaYwKBmcCH7g6qlFKAdR/zkSMhJAQSEmDOHBg3DnLksDuZcoOqRauyo8cO2pdvz+C1g6kSVYWfTv5kdyyP5MoZeBiwzxiz3xhzFZgGNHXewBiz0hhz0bG4CSjs3phKKQX88Yc1HKxXL6hVC+LjoUkTu1MpN8uVORdRTaOY8fwM9p/eT/DYYMZEj8EYY3c0j+JKAS8EOE8nk+BYdzudgYXJPSEi3UQkWkSijx8/7npKpZSaNcu6j/maNTB6NMyfDwUK2J1KpaLmZZoT3zOeqkWq0nNBTxpPbczR80ftjuUx3NqJTUTaAqHAR8k9b4wZZ4wJNcaE5tdxmUopV/z5pzUc7LnnrIlHYmKgZ08dHpZBPJLzERa1XcRnEZ+xbP8yAiIDmLd3nt2xPIIrBfwQUMRpubBj3d+ISB2gP9DEGKM3uVVK3b+NG60pPydOhP79YcMGKFXK7lQqjWWSTPSq1Itt3bbxSM5HaDKtCT3m9+DC1Qt2R7OVKwV8K1BSRB4TEX+gJTDXeQMRCQbGYhXvY+6PqZTKUK5ds4aDVatm3dN89WoYPNgaKqYyrLIPlWVzl830rdKXcdvGETw2mK2HttodyzYpFnBjTCLwErAY+BGYbozZJSIDReRG75GPgBzADBHZISJzb7M7pZS6s59+gqpVYdAgeOEF645q1arZnUp5iMy+mRn69FBWtF/B5cTLhH8RzqDVg0i8nmh3tDQndvXqCw0NNdHR0bYcWynlgYyB8ePhlVcgc2ZraFjz5nanUh7szOUzvPjDi3wT/w3hhcP5+tmvKZE3Xd6BL9kOH3onNqWU/Y4dg6ZNoXt3qFLFGh6mxVul4IEsDzCl2RSmNJvC7uO7CRobRFRMVIYZbqYFXCllrwULrOFhS5bA8OGweDEUutNIVaX+rnVAa+J6xhH6SCid53am+YzmnLh4wu5YqU4LuFLKHhcuWMPBGjWyxnNHR8PLL0Mm/W9J3b2iuYuyvN1yPnr6I+btnUdgZCCL9y22O1aq0k+KUirtRUdDhQowdiz06WPN3V2unN2plJfLJJnoU6UPW7puIW/WvERMiaDXwl5cunbJ7mipQgu4UirtJCbCkCEQHg4XL8Ly5fDRR1anNaXcJKhAEFu7buXlSi8zcstIQsaFEPNHjN2x3E4LuFIqbezfDzVqwFtvWR3U4uKsaUCVSgVZ/bIyPGI4S9ou4eyVs1SaUImh64aSdD3J7mhuowVcKZW6jLHupFa+POzaBVOmwNSpkCeP3clUBvB0iaeJ6xFHk1JN6Le8H7Um1eK3M7/ZHcsttIArpVLPyZPw/PPQsaM1/WdsLLRubXcqlcHky5aPGc/PYGLTiWz/YzuBYwKZEjfF64ebaQFXSqWOJUus4WFz58LQodb33cWK2Z1KZVAiQvug9sT2iCXgoQDazm5L61mtOX3ptN3R7pkWcKWUe126ZA0Hq1fPuky+ZQv07Qs+PnYnU4rieYqzqsMqBj81mJm7ZxI4JpCVv660O9Y90QKulHKfHTsgNBRGjIBevazhYkFBdqdS6m98M/nSv3p/NnbeSDa/bNSeVJs+S/pwJdG7JtLUAq6Uun9JSdZwsLAwOH0aFi2Czz6DrFntTqbUbYU+Esr2btvpEdqDTzZ+QtiEMHYe22l3LJdpAVdK3Z/ff4c6dazL5I0bW/cxr1fP7lRKuSS7f3ZGNxzN/FbzOXL+CKHjQhm+aTjXzXW7o6VIC7hS6t598w0EBlqXyqOiYOZMyJfP7lRK3bWGTzQkvmc8dUvU5ZXFr1Bvcj0OnTtkd6w70gKulLp7Z85Yw8HatIGyZa3hYR07giQ766FSXuGh7A8xp+UcxjUax4aDGwiIDGDGrhl2x7otLeBKqbuzapV11j1jBgwaBKtXQ/HidqdSyi1EhK4hXdnRfQcl85WkxcwWtP++PeeunLM72j9oAVdKuebKFet77lq1rM5pGzZYt0X19bU7mVJuVzJfSdZ1XMfb1d9mctxkyo8pz7rf19kd62+0gCulUrZrF1SqZPU0794dtm+HihXtTqVUqvLz8eO9p95jXcd1ZJJM1JhYg/7L+3M16ard0QAt4EqpO7l+3RoOFhIChw9bd1WLjITs2e1OplSaCS8Szo7uO+gY1JH3171PlS+qsOfEHrtjaQFXSt3G4cMQEQG9e8PTT1vDwxo3tjuVUrbImTknE5pMYFaLWRw4c4AKYysweutoW++n7lIBF5EIEdkrIvtEpF8yz2cWkW8dz28WkUfdnlQplXZmzrTuY75+PYwZY515P/yw3amUst2zpZ8lvmc81YtV58UfXqThNw05cv6ILVlSLOAi4gOMAuoDZYBWIlLmls06A6eNMY8Dw4Ch7g6qlEoD585Zw8Gefx5KlICYGOs7bx0eptRNBXMWZGGbhYysP5KVB1YSEBnAnD1z0jyHpHT6LyLhwLvGmHqO5TcAjDH/c9pmsWObjSLiCxwB8ps77Dw0NNRER0e7oQkOGzbA2bPu259SGc3Zs/Dmm/Dbb9C/PwwYAH5+dqdSyqP9ePxH2sxqQ8yRGLoEd2FYxDBy+Odw92GS/Q3alfEfhYCDTssJQKXbbWOMSRSRs0A+4MTfEoh0A7oBFC1a1KXULuvdG7Zude8+lcpoHnsM1q6FKlXsTqKUVyidvzSbumzinZXvMHT9UB7K/hBDag9Jk2On6QBOY8w4YBxYZ+Bu3XlUFFy44NZdKpWhiEC5cpAtm91JlPIq/j7+/K/O/2j0RCPKFyifZsd1pYAfAoo4LRd2rEtumwTHJfTcwEm3JHRVuXJpejillFLKWdWiVdP0eK70Qt8KlBSRx0TEH2gJzL1lm7lAe8fj5sCKO33/rZRSSqn7k+IZuOM77ZeAxYAPEGWM2SUiA4FoY8xc4AvgaxHZB5zCKvJKKaWUSiUp9kJPLW7vha6UUkqlT8n2Qtc7sSmllFJeSAu4Ukop5YVsu4QuIseB39y82we5Zey5l9P2eL701iZtj2fT9ni+1GjTCWNMxK0rbSvgqUFEoo0xoXbncBdtj+dLb23S9ng2bY/nS8s26SV0pZRSygtpAVdKKaW8UHor4OPsDuBm2h7Pl97apO3xbNoez5dmbUpX34ErpZRSGUV6OwNXSimlMgQt4EoppZQX8ooCLiJFRGSliOwWkV0i8nIy29QUkbMissPx522n5yJEZK+I7BORfmmb/p9cbM9rTm3ZKSJJIpLX8dwBEYl3PGf7/WhFJIuIbBGRWEd73ktmm8wi8q3jPdgsIo86PfeGY/1eEamXpuGT4WJ7XnW8f3EislxEijk9l+T03t068Y8tXGxTBxE57pS9i9Nz7UXkZ8ef9re+Nq252J5hTm35SUTOOD3nce8RgIj4iEiMiMxP5jmv+QzdkEJ7vOozBCm2J+0/P8YYj/8DFAQqOB7nBH4CytyyTU1gfjKv9QF+AYoD/kDsra/1xPbcsn1jrBnebiwfAB60+31xyiNADsdjP2AzUPmWbf4DjHE8bgl863hcxvGeZAYec7xXPl7QnqeAbI7HPW+0x7F83u735B7b1AH4PJnX5gX2O/7O43icx9Pbc8v2/4c1EZPHvkeOXK8C39zm/zKv+Qy52B6v+gy50J40//x4xRm4MeYPY8x2x+M/gR+BQi6+PAzYZ4zZb4y5CkwDmqZOUtfcQ3taAVPTItu9MJbzjkU/x59be0c2Bb5yPJ4J1BYRcayfZoy5Yoz5FdiH9Z7ZxpX2GGNWGmMuOhY3AYXTMOJdc/E9up16wFJjzCljzGlgKfCPu0KlpXtoj0d/hgBEpDDQEJhwm0285jMEKbfH2z5DLrw/t5Nqnx+vKODOHJeNgrF+475VuOOS2kIRKetYVwg46LRNAq4X/1SXQnsQkWxYb/Z3TqsNsEREtolIt1QP6QLHpaUdwDGsH9Zb23PzfTDGJAJngXx46PvjQnucdQYWOi1nEZFoEdkkIs+kYsy74mKbnnNc0pwpIkUc67z6PXJcmn0MWOG02hPfo+FAX+D6bZ73qs8QKbfHmTd8hoaTcnvS9PPjVQVcRHJgFbLexphztzy9HShmjCkPjAS+T+N4dy2F9tzQGFhvjDnltK6aMaYCUB94UUSqp3LUFBljkowxQVi/RYeJSDmbI90XV9sjIm2BUOAjp9XFjHUrxdbAcBEpkdp5XeFCm+YBjxpjArHOEr7Cg93Fz1xLYKYxJslpnUe9RyLSCDhmjNlmZw53uZv2eMNnyMX2pPnnx2sKuIj4YRW7KcaYWbc+b4w5d+OSmjHmB8BPRB4EDgFFnDYt7Fhnq5Ta46Qlt1z6M8Yccvx9DJiNB1wuu8EYcwZYyT8vEd18H0TEF8gNnMRD358b7tAeRKQO0B9oYoy54vSaG+/PfmAV1hUWj3G7NhljTjq1YwIQ4njste+Rw50+Q57yHlUFmojIAayv+WqJyORbtvGmz5Ar7fGmz1CK7bHl8+OOL9JT+w9Wh5VJwPA7bFOAv25MEwb87nidL1angcf4qxNbWU9vj2O73MApILvTuuxATqfHG4AIm9uTH3jA8TgrsBZodMs2L/L3DjjTHY/L8vcOOPuxvxObK+0JxuosVPKW9XmAzI7HDwI/Y3OnybtoU0Gnx88CmxyP8wK/OtqWx/E4r6e3x/Hck1idPsXT3yOnfDVJvpOU13yGXGyPV32GXGhPmn9+fPEOVYEXgHjHd14AbwJFAYwxY4DmQE8RSQQuAS2N9a+XKCIvAYuxeqRHGWN2pXH+W7nSHrB+CJYYYy44vfZhYLbVdwVf4BtjzKK0CH0HBYGvRMQH66rOdGPMfBEZCEQbY+YCXwBfi8g+rF9KWgIYY3aJyHRgN5AIvGj+fqnTDq605yMgBzDD8V78boxpApQGxorIdcdrPzDG7LalFX/nSpt6iUgTrPfhFFavWowxp0RkELDVsa+B5u9f6djBlfaA9XM2zfF/wQ2e+h79gxd/hpLl5Z+hf7D786O3UlVKKaW8kNd8B66UUkqpv2gBV0oppbyQFnCllFLKC2kBV0oppbyQFnCllFLKC2kBV0oppbyQFnCllFLKC/0/+Gm0Zr/e4LwAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 504x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x_ukuran_batang = RangeSubjektif(min_ukuran_batang , max_ukuran_batang , 1)\n",
"r_ukuran_batang = np.array([\n",
" [min_ukuran_batang,min_ukuran_batang,mid_ukuran_batang,mid_ukuran_batang],\n",
" [mid_ukuran_batang,mid_ukuran_batang,max_ukuran_batang,max_ukuran_batang]\n",
"])\n",
"\n",
"lo_ukuran_batang , hi_ukuran_batang = FuzzyShow(r_ukuran_batang , x_ukuran_batang, 'Keliling (cm)')"
]
},
{
"cell_type": "code",
"execution_count": 385,
"id": "d3c1bed7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAuJElEQVR4nO3dd3hUVf7H8fc3ISGSRKRYKQqKiA2QiMCKZZNAqBGx0EFQLGvBVRFRV2XFldVV1LWxyiIgIEUg0hMUxcaCjRUVZREhFlAUTEIJgfP74478YghkgMncmeTzeh4fZu6cufczx2S+ue0cc84hIiIi0SXG7wAiIiJy8FTARUREopAKuIiISBRSARcREYlCKuAiIiJRSAVcREQkCqmAi0QJM7vIzHJ9zjDczF44wOtVzewzMzs+DFmONbPPzaxqeW9LJBKpgIuEmJktMbOrfc4wwMx2m1l+4L+vzezfZnbq4azXOfeQc+5An20w8JZz7vvD2U6QWTYCbwS2KVLpqICLRADzhPr38T3nXBJQHUgDtgMfmNmZh7IyM6sSRLPrgAmHsv5D9DJwbRi3JxIxVMBFyomZ1TCzOWb2o5n9Enhct9jrS8xspJm9A2wDGprZVYHDwnlmttbM9luczOzmwOHquvtrA+Cc2+2c+59z7gbgTeD+wPv3OSRvZuvMLC3w+H4zm25mE83sV2BAYNnE/eSpDzQElhVbNs7MnjGz+YEjAe+Y2XFmNjrQJ1+YWfMS27/DzFaaWYGZvRg4VD4/0Cc5Zlaj2GaXBfrtxAP1gUhFpAIuUn5igH8DJwL18faA/1miTV+8Q8DJwDfAJqAzcCRwFfC4mZ1TcsVm9hdgAHChc+5gzou/CrQ9iPaZwHTgKLy93QM5C1jrnCsqsfwK4B6gNrATeA/4MPB8OvBYifbdgXTgVKALMB8YDhyN16c3/9YwsK01QNOD+EwiFYIKuEg5cc5tds7NcM5tc87lASOBC0s0G+ecW+WcK3LO7XLOzQ3sLTvn3JvAIn5fcM3MHgPaARc75348yFjfATUPov17zrlZzrk9zrntZbQ9CsgrZflM59wHzrkdwExgh3NuvHNuN/AK0LxE+6eccxudc98CS4FlzrmPir2/ZPu8wLZFKpVgzmmJyCEws2rA40AG8Nth32Qziw0UL4ANJd7TAbgPb+8zBqgG/LdYk6Pw9tivdM5tPYRYdYCfD6L9hrKb7PUL3pGEkjYWe7y9lOdJh9k+GdhyEDlFKgTtgYuUn9uAxsB5zrkjgQsCy61Ym73TAQZuh5oBPAoc65w7CphXov0veIfY/21mfziETN3w9moBCvD+QPht+7F4h6mLO5jpClcCDYK82C0kAts6BfgkXNsUiRQq4CLlJxlvj3GLmdXE27M+kHigKvAjUBTYG29XspFzbgnQG3jVzFqWFcLMYs2sgZk9BVwEPBB46Usgwcw6mVkc3nnqQ76nOnAufg1QZqYQagmsc859E8ZtikQEFXCR8uGA0cARwE/A+8CCA77BO09+MzAVb0+7F5C1n7bZwEDgtdIucgtobWb5wK/AErwL4851zv03sI6twA3AC8C3eHvkhztQzPN4F+aFS2/guTBuTyRimHMHc4RMRMpiZh8CI5xzs/zOEm6B0wAfAanlPZiLmR2Dd1tc88AFbiKVigq4SAiZ2RnACuA0HdYVkfKkQ+giIWJmo/Bu+7pTxVtEypv2wEVERKKQ9sBFRESikG8DuWRkZLgFCw54Ua6IiIj8fiyIvXzbA//pp5/82rSIiEjU0yF0ERGRKKQCLiIiEoVUwEVERKJQmQXczMaa2SYz+3Q/r5uZPWlma8xs5QGGdRQREZEQCeYq9HHAP4Hx+3m9A9Ao8N95wLOBf8Nq957dZTcSCYixGMxKvbBT5Pf27AGNlyHBMoOY8BzcLrOAO+feMrOTDtAkExjvvBFh3jezo8zs+PIeB7mk1i+2Zvl3y8O5SYliDWs0JLtvNg1rNPQ7ikSyl1+Ga66B7dv9TiLRYtQoGDo0LJsKxX3gdYANxZ7nBpbtU8DNbDAwGKB+/foh2PT/u7bFtXQ5tUtI1ykV0x63hyf/8yRp49NYetVS6hxZx+9IEolmzoT+/aFVK2jf3u80Ei3OPz9smwrrQC7OuTHAGICUlJSQHpMadM6gUK5OKriOjTqSOj6VtAlpvDngTY5JPMbvSBJJFi6EK6+Ec8+FBQsgKcnvRCL7CMWB+m+BesWe1w0sE4lY59Y5lzm95vDNlm9oP7E9W3Zs8TuSRIq33oJu3eCMM2DePBVviVihKOBZQL/A1eitgK3hPv8tciguOPECZl45k1WbVtHh5Q7kF+b7HUn8tnw5dO4MJ57o7YXXqOF3IpH9CuY2ssnAe0BjM8s1s0Fmdp2ZXRdoMg9YC6wB/gXcUG5pRUKs/SntmXLZFJZ/u5zMKZnsKNrhdyTxy6efQkYG1KoF2dlwjE6rSGTzbTrRlJQUt2LFCl+2LVLShE8m0G9WPzqf2plXr3iVuNg4vyNJOH31FbRtC7GxsHQpNNTdCRJRImsyE5FI0rdpX57p+AxzvpxD35l9Na5AZbJ+PaSmwu7dkJOj4i1Rw7fpREUizfXnXk9+YT5Dc4aSGJfIv7r+ixjT37gV2g8/eMX711/hjTegSRO/E4kETQVcpJg7/nAHeYV5/PWtv5IUn8TojNEasa2i2rwZ0tPhu++8c97Nm/udSOSgqICLlPDARQ/w685feWLZEyRXTebBPz7odyQJtV9/9S5Y+/JLmDsX2rTxO5HIQVMBFynBzHi8/ePkF+YzculIkuOTufP8O/2OJaGybZt3q9hHH8Grr0Jamt+JRA6JCrhIKcyM5zs/T8GuAoYtHkZSfBJ/avknv2PJ4dq5Ey69FN5+2xvnvGtXvxOJHDIVcJH9iI2JZfwl4ykoLODG+TeSFJ9E/2b9/Y4lh6qoCHr29AZo+de/vMciUUyX2IocQFxsHFMvn0pqg1QGZg1k+mfT/Y4kh2LPHhg40Jug5PHH4eqr/U4kcthUwEXKkFAlgVk9ZtGqbit6zejFvK/m+R1JDoZz8Kc/wYQJMGIEDBnidyKRkFABFwlCUnwSc3vN5cxjzqT71O68ue5NvyNJMJyDO++E556DO+6Ae+7xO5FIyKiAiwTpqISjWNhnIQ2OakDnyZ35z7f/8TuSlGXkSHjkEbj+ehg1CnRPv1QgKuAiB+HoxKPJ7pvN0dWOJmNiBis3rvQ7kuzP6NFw773Qty/8858q3lLhqICLHKQ6R9Zhcb/FVIurRvqEdL7c/KXfkaSkF1+EW2/1bhkbOxZi9FUnFY9+qkUOQYMaDcjpl4NzjrTxaXyz5Ru/I8lvpkyBa67xRlqbNAmq6G5ZqZhUwEUO0Wm1T2NR30XkFeaROj6V7/O+9zuSvPaad8i8bVuYMQOqVvU7kUi5UQEXOQzNjmvG/N7z+SH/B9InpPPTtp/8jlR5LV4Ml1/uTUry2mtQrZrfiUTKlQq4yGFqVbcVWT2zWPPzGjImZrB1x1a/I1U+777rDYvaqBHMnw9HHul3IpFypwIuEgJ/bPBHZlwxg082fkLnyZ0pKCzwO1Ll8eGH0LEj1KnjTQtaq5bfiUTCQgVcJEQ6ndqJly99mXc3vEu3V7qxs2in35Eqvs8+g/btoXp1yMmB447zO5FI2KiAi4TQFWdcwQtdXiB7bTY9ZvRg1+5dfkequNauhfR0iI31inf9+n4nEgmroAq4mWWY2WozW2Nmw0p5vb6ZvWFmH5nZSjPrGPqoItHhquZX8WTGk8z6YhZXzb6KPW6P35EqntxcSE2FHTu84t2okd+JRMKuzBskzSwWeBpIB3KB5WaW5Zz7rFize4Cpzrlnzex0YB5wUjnkFYkKN513E3mFedz9+t0kxSfxbKdnMY0EFhqbNkFaGmzeDK+/Dmee6XciEV8EM8JBS2CNc24tgJlNATKB4gXcAb9d9lkd+C6UIUWi0fC2w8nbmcfD7zxMUnwSj6Q/oiJ+uH75Bdq1g/XrvXm9U1L8TiTim2AKeB1gQ7HnucB5JdrcDywys5uARCCttBWZ2WBgMEB9na+SSuCh1IfIL8znH+/9g+T4ZO676D6/I0WvvDzvavPPP4esLG+wFpFKLFQXsfUExjnn6gIdgQlmts+6nXNjnHMpzrmUo48+OkSbFolcZsYTHZ6gf9P+3P/m/Tz23mN+R4pO27dDZiYsX+4Nldq+vd+JRHwXzB74t0C9Ys/rBpYVNwjIAHDOvWdmCUBtYFMoQopEsxiL4YWuL5BfmM9ti24jKT6JwS0G+x0rehQWeiOsvfEGjB8P3br5nUgkIgSzB74caGRmDcwsHugBZJVosx5IBTCzJkAC8GMog4pEsyoxVZjUfRIdTunAdXOu4+WVL/sdKTrs3u2NbT53LjzzjPdYRIAgCrhzrgi4EVgIfI53tfkqMxthZl0DzW4DrjGzT4DJwADnnCuv0CLRKD42nhlXzOCCEy+g/6z+zPpilt+RItuePd6sYlOnwt//Dtdf73cikYhiftXZlJQUt2LFCl+2LeKnvJ15pE1I4+MfPmZOzzmkn5zud6TI4xwMGQJPPgn33gsjRvidSMRPpd6+opHYRMIsuWoy83vP57Tap3HJK5fw9vq3/Y4Uee691yveQ4bAAw/4nUYkIqmAi/ig5hE1WdRnEXWPrEunSZ344LsP/I4UOUaNgpEj4eqr4bHHQPfOi5RKBVzEJ8cmHUtO3xxqJNSg/cT2rNq0yu9I/nv6aRg2DHr2hOeeU/EWOQAVcBEf1atej5x+OcTFxpE+IZ3//fw/vyP556WX4MYbvXm9X3rJm6RERPZLBVzEZ6fUPIWcvjkU7i4kdXwqG7ZuKPtNFc306TBwoDdBySuvQFyc34lEIp4KuEgEOOOYM1jYZyG/7PiFtAlpbMzf6Hek8Jk3D3r1glatYPZsSEjwO5FIVFABF4kQLU5owdxec9mwdQPtJrbj5+0/+x2p/C1ZAt27ezOKzZ0LiYl+JxKJGirgIhHk/PrnM7vHbL746Qs6vNyBvJ15fkcqP8uWQZcu0KCBN7PYUUf5nUgkqqiAi0SY9JPTmXrZVD747gO6TunK9l3b/Y4UeitXQocOcMwxkJMDmtxI5KCpgItEoMzTMhnfbTxvrnuT7lO7U7i70O9IobN6NaSnQ7VqsHgxnHCC34lEopIKuEiE6nVWL57r/Bzz18yn96u9KdpT5Hekw7duHaSleUOl5uTASSf5nUgkagUznaiI+GRwi8F7pyFNjEtkbOZYYixK/+7+/nuveOfnexevnXaa34lEopoKuEiE+3PrP5O3M4/737yfpPgknurwFBZtI5T99JNXvH/4wdvzbtrU70QiUU8FXCQK/OXCv5BXmMc/3vsHyfHJ/C3tb35HCt7WrdC+Paxd693z3aqV34lEKgQVcJEoYGY8kv4I+YX5PPzOwyRXTWZ42+F+xypbQQF06uRddT5rFlx8sd+JRCoMFXCRKGFmPNPpGfIL87n79btJik/i5vNu9jvW/u3YAd26wXvvwZQpXiEXkZBRAReJIjEWw7hLxlGwq4BbFtxCUnwSA5sP9DvWvnbtgh49IDsb/v1vuPxyvxOJVDhRejmrSOVVJaYKU7pPIb1hOte8dg1TV031O9Lv7d4NAwZ445o/+aT3WERCTgVcJApVrVKVmVfOpE29NvR+tTdzvpzjdySPc3D99TBpEowcCTfd5HcikQpLBVwkSiXGJzKn5xyaHtuUy6Zexhtfv+FvIOfg9tvhX/+CYcNgeBRcZCcSxYIq4GaWYWarzWyNmQ3bT5srzOwzM1tlZpNCG1NESlM9oToL+izg5Jon02VyF97Pfd+/MCNGwGOPwY03wkMP+ZdDpJIos4CbWSzwNNABOB3oaWanl2jTCLgL+INz7gxgSOijikhpalerTU7fHI5LOo4OL3fg4x8+Dn+Ixx6D++/3znc/8QRE20AzIlEomKvQWwJrnHNrAcxsCpAJfFaszTXA0865XwCcc5tCHVRE9u/45ONZ3G8x5//7fNpNaMdbV73FabXDNFTpmDFw221w2WXe4fMYnZmTfe3atYvc3Fx27Njhd5SIlZCQQN26dYmLiwuqfTAFvA6wodjzXOC8Em1OBTCzd4BY4H7n3IKSKzKzwcBggPr16wcVUESCc+JRJ7K432La/rstaePTWHrVUhrUaFC+G335ZbjuOujY0XtcRXemSulyc3NJTk7mpJNOir6hgMPAOcfmzZvJzc2lQYPgfm9D9adyFaARcBHQE/iXmR1VSsAxzrkU51zK0Zr/VyTkTq11Ktl9s9m2axtpE9L4Lu+78tvYrFnQvz9ceCFMnw7x8eW3LYl6O3bsoFatWire+2Fm1KpV66COUARTwL8F6hV7XjewrLhcIMs5t8s59zXwJV5BF5EwO/vYs1nQZwGbCjaRNj6NHwt+DP1GsrPhyishJQWysuCII0K/DalwVLwP7GD7J5gCvhxoZGYNzCwe6AFklWgzC2/vGzOrjXdIfe1BJRGRkGlZpyVzes7h6y1f035ie7bs2BK6lb/9NmRmetOBzp8PycmhW7dIOTIz+vTps/d5UVERRx99NJ07dz7kdT4U5B0XSUlJh7yN/SmzgDvnioAbgYXA58BU59wqMxthZl0DzRYCm83sM+AN4A7n3OaQpxWRoF140oW8esWrfLrpUzpN6kRBYcHhr/SDD7wxzevVg0WLoEaNw1+nSJgkJiby6aefsn37dgCys7OpU6fOYa0z2AJeHoI6B+6cm+ecO9U5d7JzbmRg2V+cc1mBx84592fn3OnOubOcc1PKM7SIBKdDow5M7j6Z93PfJ3NKJjuKDuMK4FWrvGlBa9Tw5vQ+9tjQBRUJk44dOzJ37lwAJk+eTM+ePfe+VlBQwMCBA2nZsiXNmzdn9uzZAIwbN45LL72UjIwMGjVqxNChQwEYNmwY27dvp1mzZvTu3RuASy65hBYtWnDGGWcwZsyY32377rvvpmnTprRq1YqNGzce9mcx59xhr+RQpKSkuBUrVviybZHK5qWPX2LA7AF0ObULM66YQVxscLep7LVmDbRt693fvXQpnHxy+QSVCuvzzz+nSZMmAAxZMCTk4xU0O64ZozNGH7BNUlIS7777LiNGjGDixIm0atWK0aNH8+ijjzJnzhyGDx/O6aefTp8+fdiyZQstW7bko48+Ytq0aYwYMYKPPvqIqlWr0rhxY95++23q1atHUlIS+fn5e7fx888/U7NmTbZv3865557Lm2++uffivaysLLp06cLQoUM58sgjueeee/bJWLyfiin15Lhu2BSpBPo368/THZ/mtS9fo9+sfuzeszv4N2/YAKmp3gxjOTkq3hLVzj77bNatW8fkyZPp2LHj715btGgRDz/8MM2aNeOiiy5ix44drF+/HoDU1FSqV69OQkICp59+Ot98802p63/yySf37mVv2LCBr776CoD4+Pi959pbtGjBunXrDvuz6KZNkUrihnNvIG9nHsMWDyMpLokxXcaUfdXrxo2QlgZbtsAbb8Dppx+4vUgQytpTLm9du3bl9ttvZ8mSJWze/P+XaznnmDFjBo0bN/5d+2XLllG1atW9z2NjYykqKtpnvUuWLCEnJ4f33nuPatWq7f0jACAuLm7v79v+3n+wtAcuUoncef6d3N32bl746AX+vPDPHPAU2s8/Q3o65ObCvHlwzjnhCypSjgYOHMh9993HWWed9bvl7du356mnntr7e/HRRx+Vua64uDh27doFwNatW6lRowbVqlXjiy++4P33y3duAu2Bi1Qyf734r+TtzGP0stEkV01mxMUj9m2UlwcdOsDq1TB3LvzhD+EPKlJO6taty80337zP8nvvvZchQ4Zw9tlns2fPHho0aMCcOQeeqnfw4MGcffbZnHPOOYwdO5bnnnuOJk2a0LhxY1q1alVeHwHQRWwildIet4drsq5h7Mdj+Xva37njD3f8/4vbtnlDo779NsyY4d3zLXKY9nNxlpRwMBexaQ9cpBKKsRjGdBlDwa4ChuYMJSk+ievPvR4KC71JSd56yxvbXMVbJGKpgItUUrExsUzoNoGCXQXcMO8GkmOOoM/f5nijq40ZA8XujxWRyKMCLlKJxcXGMe3yaXSe2JE9g66CT/Dm9r7mGr+jiUgZdBW6SCWXEFuVecsa0e8TeODiGBZ20a1iItFABVykshs+nPjnxrBjyI3MuuIsur3Sjbe+ecvvVCJSBhVwkcrsoYfg4Yfh2mtJeOxJFvZdxIlHnUjnSZ1Z/u1yv9OJyAGogItUVk8+CXffDb17wzPPgBnHJB5Ddt9salWrRcbLGXy66VO/U4qETHlMJ1qa8pg6tDQq4CKV0dixcMstcMklMG4cxPz/V0HdI+uyuN9iEqokkDY+ja82f+VbTJFQKo/pRP2kAi5S2Uyd6l1l3q4dTJkCVfa9GaVhjYbk9M1ht9tN6vhU1m9d70NQkdA70HSi//nPf2jdujXNmzenTZs2rF69GoBVq1bRsmVLmjVrxtlnn713gpIDTR0K8NNPP9G6deu92ws13UYmUpnMmeMdMm/TBmbOhGITNJTU5OgmLOqziItfupjU8aksvWopxyUdF8awUmENGQIffxzadTZrBqNHl9msR48ejBgxgs6dO7Ny5UoGDhzI0qVLATjttNNYunQpVapUIScnh+HDhzNjxgyee+45brnlFnr37k1hYSG7d3uz+Y0dO/Z3U4d2796dWrVqAbBx40a6du3Kgw8+SHp6emg/a4AKuEhl8frr3ihrTZt6hbxatTLf0vz45szrPY92E9qRPiGdJf2XUKtarTCEFSkfB5pOdOvWrfTv35+vvvoKM9s7SUnr1q0ZOXIkubm5XHrppTRq1Ajwpg6dOXMmwN6pQ2vVqsWuXbtITU3l6aef5sILLyy3z6ICLlIZvPcedO0Kp5wCCxdC9epBv7VNvTbM7jGbTpM6kfFyBov7LebIqkeWY1ip8ILYUy5P+5tO9N577+Xiiy9m5syZrFu3josuugiAXr16cd555zF37lw6duzI888/T0xMzH6nDq1SpQotWrRg4cKF5VrAdQ5cpKL7+GNvZrHjj4fsbKh18HvQqQ1TmXb5ND7+4WM6T+rMtl3bQp9TJEz2N53o1q1b917UNm7cuL3L165dS8OGDbn55pvJzMxk5cqVB5w61MwYO3YsX3zxBaNGjSq3z6ECLlKRffGFd7HakUdCTo5XxA9Rl8ZdmNBtAm+vf5tLX7mUnUU7QxhUJHz2N53o0KFDueuuu2jevDlFRUV7l0+dOpUzzzyTZs2a8emnn9KvXz8yMjIoKiqiSZMmDBs2bJ+pQ2NjY5k8eTKvv/46zzzzTLl8Dk0nKlJRff01tG0LRUXe7GKnnhqS1b744Ytc/drVdDutG1Mvn0qVGJ2Jk7JpOtHgHMx0okHtgZtZhpmtNrM1ZjbsAO26m5kzs5Tg44pIyH37LaSmenN7Z2eHrHgDDDpnEKPbj2bmFzMZOHsge9yekK1bRIJX5p/OZhYLPA2kA7nAcjPLcs59VqJdMnALsKw8gopIkH78EdLSvH8XL4YS5/lC4ZZWt5BXmMe9b9xLYlwiz3R6BrNSdxJEpJwEc+yrJbDGObcWwMymAJnAZyXa/RUYBdwR0oQiErwtW7xz3uvWwYIF0LJluW3q7rZ3k7czj7+/+3eSqyYzKm2UirhIGAVTwOsAG4o9zwXOK97AzM4B6jnn5prZfgu4mQ0GBgPUr1//4NOKyP7l50PHjrBqFWRlQTnevgLelbYPpz1MfmE+j7z7CMnxydx74b3luk2Jbs45/ZF3AAd7TdphX31iZjHAY8CAsto658YAY8C7iO1wty0iATt2QGYmLFvmDZWakRGWzZoZT3V8ivxd+fxlyV9IrprMkFZDwrJtiS4JCQls3ryZWrVqqYiXwjnH5s2bSUhICPo9wRTwb4F6xZ7XDSz7TTJwJrAk8D/lOCDLzLo653SZuUh527ULrrjCG2ntpZege/ewbj7GYnix64sUFBZw68JbSYpP4upzrg5rBol8devWJTc3lx9//NHvKBErISGBunXrBt0+mAK+HGhkZg3wCncPoNdvLzrntgK1f3tuZkuA21W8RcJg927o2xdeew2efhr69fMlRpWYKkzqPonMKZkMfm0wiXGJ9DyrZ9lvlEojLi6OBg0a+B2jQinzNjLnXBFwI7AQ+ByY6pxbZWYjzKxreQcUkf3YsweuvRZeeQVGjYIbbvA1TnxsPDOumEHbE9vSd2ZfslZn+ZpHpKLTQC4i0cg5uPVWeOIJuOce+Otf/U601687fyVtfBqfbPyEub3mktYwze9IItHu0AdyEZEIc999XvG+5RYYMcLvNL9zZNUjWdBnAY1rNSZzSibvbnjX70giFZIKuEi0eeQRb4970CB4/HGIwCt6ax5Rk+y+2dRJrkPHlzvy4fcf+h1JpMJRAReJJs8+C0OHwpVXwvPPR2Tx/s2xSceS0y+H6gnVaT+xPZ/9WHLsJxE5HCrgItFiwgTvQrXOnb3HsbF+JypT/er1yembQ6zFkj4hnbW/rPU7kkiFoQIuEg1efRUGDIA//hGmTYO4OL8TBa1RrUbk9MthR9EOUsenkvtrrt+RRCoEFXCRSLdgAfToAeedB7Nnw0GM1BQpzjzmTBb2WcjmbZtJG5/GpoJNfkcSiXoq4CKR7K23oFs3OOMMmDcPkpL8TnTIUk5IYW6vuazfup52E9rxy/Zf/I4kEtVUwEUi1fLl3vnuk06CRYvgqKP8TnTY2p7YlplXzuTznz6n46SO5O3M8zuSSNRSAReJRP/9L7RvD7VrQ04OHH2034lCpv0p7ZnSfQrLv11O5pRMtu/a7nckkaikAi4Sab78EtLT4YgjYPFiqFPH70Qh161JN8ZdMo4l65Zw+bTLKdxd6HckkaijAi4SSb75BtLSvElKcnKgAk/+0OfsPjzb6VnmfjWXvjP7snvPbr8jiUSVw54PXERC5PvvveL966/wxhvQpInficrdtSnXkleYxx3Zd5AYl8gLXV8gxrRfIRIMFXCRSLB5s3fY/PvvITsbmjf3O1HY3N7mdvJ25jHirREkxSfxRMYTWASPMCcSKVTARfz266+QkQFr1ni3irVu7XeisLv/ovvJK8zj8fcfJzk+mZGpI/2OJBLxVMBF/LRtm3er2Mcfw8yZ3khrlZCZ8Y92/yC/MJ+H3n6I5KrJDDt/mN+xRCKaCriIX3bu9AZpeecdmDTJK+SVmJnxbKdnKdhVwF2L7yIpPokbW97odyyRiKUCLuKHoiLo2dMboOXFF73ZxYTYmFjGZY6joLCAm+bfRFJ8EgOaDfA7lkhE0uWeIuG2Zw9cdZV3yPyJJ2DgQL8TRZS42DimXDaFtIZpDMoaxLRV0/yOJBKRVMBFwsk5+NOfYOJEePBBuPlmvxNFpIQqCcy6chat67am96u9mffVPL8jiUQcFXCRcHEO7rwTnnvO+3f4cL8TRbTE+ETm9prLWceeRfep3VmybonfkUQiSlAF3MwyzGy1ma0xs30uDTWzP5vZZ2a20swWm9mJoY8qEuUefBAeecTbA//b30D3OpepekJ1FvZZSMMaDekyuQvLcpf5HUkkYpRZwM0sFnga6ACcDvQ0s9NLNPsISHHOnQ1MB/4e6qAiUW30aPjLX6B/f3jySRXvg1C7Wm2y+2ZzbOKxdHi5Ays3rvQ7kkhECGYPvCWwxjm31jlXCEwBMos3cM694ZzbFnj6PlA3tDFFotgLL8Ctt0L37t7jGJ25OlgnJJ9ATr8cEuMTSZ+QzuqfVvsdScR3wXyT1AE2FHueG1i2P4OA+aW9YGaDzWyFma348ccfg08pEq0mT4bBg6FDB+9e7yq6c/NQnXTUSeT0zQEgbUIa67as8zeQiM9CuitgZn2AFOCR0l53zo1xzqU451KOrkDzG4uUKisL+vaFCy6AGTMgPt7vRFGvce3GLOqziPzCfNLGp/F93vd+RxLxTTAF/FugXrHndQPLfsfM0oC7ga7OuZ2hiScSpXJy4PLLoUULeO01b25vCYmmxzVlQe8F/JD/A2kT0vhp209+RxLxRTAFfDnQyMwamFk80APIKt7AzJoDz+MV702hjykSRd55BzIzoXFjmD8fkpP9TlThnFf3PF7r+Rprf1lL+4nt2bpjq9+RRMKuzALunCsCbgQWAp8DU51zq8xshJl1DTR7BEgCppnZx2aWtZ/ViVRsH34IHTtCnTretKA1a/qdqMK6uMHFTL98Ois3rqTTpE4UFBb4HUkkrMw558uGU1JS3IoVK3zZtki5+Owz73x3YiIsXQr16/udqFKYtmoaPWb0ILVBKlk9s0iokuB3JJFQK/W+U93PIhIK//sfpKVBXBwsXqziHUaXn3E5L3Z9key12fSY3oNdu3f5HUkkLFTARQ5Xbi6kpnrTg2Znwymn+J2o0hnQbABPdXiK2atnM2D2AHbv2e13JJFyp5tSRQ7Hpk3envfPP8Prr8OZZ/qdqNK6seWN5O3MY/jrw0mMS+T5zs9jGvFOKjAVcJFD9csv0K4drF8PCxdCSorfiSq9u9reRV5hHn97+28kxyfzaLtHVcSlwlIBFzkUeXne6Gqff+7d5922rd+JJGDkH0eSX5jPY+8/RnLVZO6/6H6/I4mUCxVwkYO1fTt07QorVsD06d5euEQMM2N0xmjyCvN44M0HSI5P5rY2t/kdSyTkVMBFDkZhIVx2Gbz5JkyYAJdc4nciKUWMxfBClxcoKCzg9uzbSYpP4tqUa/2OJRJSKuAiwSoqgj59YN48eP556N3b70RyALExsUy8dCLbdm3j+rnXkxifSJ+z+/gdSyRkdBuZSDD27IFrroFp0+DRR70ZxiTixcfGM+3yaVx00kUMmDWAWV/M8juSSMiogIuUxTkYMgTGjYP77oPbdD41mhwRdwSze8wm5YQUrpx+Jdn/y/Y7kkhIqICLlOWee+Cpp+DPf/YKuESd5KrJzO89nya1m5A5JZO317/tdySRw6YCLnIgDz8MDz3kHTJ/9FHQPcVRq8YRNVjUdxH1q9en06ROfPDdB35HEjksKuAi+/PPf8Jdd0GvXvDMMyreFcAxiceQ0y+HmkfUpP3E9qzatMrvSCKHTAVcpDTjxsFNN3nzeo8bB7GxfieSEKl7ZF1y+uYQHxtP2oQ01vy8xu9IIodEBVykpGnTYNAgSE+HV17xZhiTCuXkmieT0y+Hoj1FpI5PZcPWDX5HEjloKuAixc2b5x0yb9MGZs6EqlX9TiTl5PSjT2dhn4Vs2bGFtAlpbMzf6HckkYOiAi7ymyVLoHt3aNoU5syBxES/E0k5O+f4c5jfez65v+aSPiGdn7f/7HckkaCpgIsALFsGXbpAw4awYAFUr+53IgmTNvXaMLvHbFZvXk2HlzuQtzPP70giQVEBF/nkE8jIgGOPhZwcqF3b70QSZmkN05h2+TQ++O4DukzuwrZd2/yOJFImFXCp3Fav9i5WS0ryivfxx/udSHzStXFXJnSbwFvfvMVlUy+jcHeh35FEDiioAm5mGWa22szWmNmwUl6vamavBF5fZmYnhTypSKitWwdpad793Tk5cNJJficSn/U8qyfPd36e+Wvm02tGL4r2FPkdSWS/yizgZhYLPA10AE4HeprZ6SWaDQJ+cc6dAjwOjAp1UJGQ+u47SE2F/HxYtAgaN/Y7kUSIa1pcw2PtHmPG5zMYlDWIPW6P35FEShXMdKItgTXOubUAZjYFyAQ+K9YmE7g/8Hg68E8zM+ecC2HWA3v3Xdi6NWybkyi2Zw8MHQqbNnl73k2b+p1IIsytrW8lrzCP+5bcR3xMPJc2udTvSBIlGtduTMMaDcOyrWAKeB2g+CgHucB5+2vjnCsys61ALeCn4o3MbDAwGKB+/fqHGHk/hgyB5ctDu06puBISYP58OK/kj7KI594L7iW/MJ9H3n2EFz56we84EiVGpY1i6B+GhmVbwRTwkHHOjQHGAKSkpIR273zsWCgoCOkqpQKrVw9OOMHvFBLBzIxRaaPo17QfBYX6bpHg1KteL2zbCqaAfwsUT1Q3sKy0NrlmVgWoDmwOScJgnXlmWDcnIhWfmXHmMfpukcgUzFXoy4FGZtbAzOKBHkBWiTZZQP/A48uA18N6/ltERKSSKXMPPHBO+0ZgIRALjHXOrTKzEcAK51wW8CIwwczWAD/jFXkREREpJ+bXjnJKSopbsWKFL9sWERGJIlbaQo3EJiIiEoVUwEVERKKQb4fQzexH4JsQr7Y2Je49F0D9Uhr1SenUL/tSn5RO/VK68uiXn5xzGSUX+lbAy4OZrXDOpfidI9KoX/alPimd+mVf6pPSqV9KF85+0SF0ERGRKKQCLiIiEoUqWgEf43eACKV+2Zf6pHTql32pT0qnfild2PqlQp0DFxERqSwq2h64iIhIpaACLiIiEoWiroCbWWMz+7jYf7+a2ZASbS4ys63F2vzFp7hhY2a3mtkqM/vUzCabWUKJ16ua2StmtsbMlpnZST5FDasg+mWAmf1Y7Gflar+yhpOZ3RLok1Ulf38Cr5uZPRn4eVlpZuf4EDOsguiTSvG9YmZjzWyTmX1abFlNM8s2s68C/9bYz3v7B9p8ZWb9S2sTrQ6zX3YX+7kpORnYoXPORe1/eJOr/ACcWGL5RcAcv/OFsR/qAF8DRwSeTwUGlGhzA/Bc4HEP4BW/c0dIvwwA/ul31jD3y5nAp0A1vAmNcoBTSrTpCMzHG4O5FbDM79wR0CeV4nsFuAA4B/i02LK/A8MCj4cBo0p5X01gbeDfGoHHNfz+PH73S+C1/PLIFHV74CWkAv9zzoV6RLdoVAU4IjAfezXguxKvZwIvBR5PB1LNrNQB8iuYsvqlMmqCV5C3OeeKgDeBS0u0yQTGO8/7wFFmdny4g4ZRMH1SKTjn3sKbVbK44t8fLwGXlPLW9kC2c+5n59wvQDawz+hh0eow+qXcRHsB7wFM3s9rrc3sEzObb2ZnhDNUuDnnvgUeBdYD3wNbnXOLSjSrA2wItC8CtgK1wpkz3ILsF4DugcPE082sXlhD+uNToK2Z1TKzanh72yU/996fl4DcwLKKKpg+gUr0vVLCsc657wOPfwCOLaVNZfuZgeD6BSDBzFaY2ftmdkmoNh61BdzM4oGuwLRSXv4Q77B6U+ApYFYYo4Vd4LxLJtAAOAFINLM+/qbyX5D98hpwknPubLw9hpeo4JxznwOjgEXAAuBjYLefmfwWZJ9Uqu+V/XHeMWHdf1xCGf1yovOGV+0FjDazk0Oxzagt4EAH4EPn3MaSLzjnfnXO5QcezwPizKx2uAOGURrwtXPuR+fcLuBVoE2JNt8S2KMIHE6uDmwOa8rwK7NfnHObnXM7A09fAFqEOaMvnHMvOudaOOcuAH4BvizRZO/PS0DdwLIKq6w+qYTfK8Vt/O0USuDfTaW0qXQ/MwTXL78dDcQ5txZYAjQPxcajuYD3ZD+Hz83suN/O75pZS7zPWZGL1XqglZlVC3zuVODzEm2ygN+uCr0MeD3wF2NFVma/lDiv27Xk6xWVmR0T+Lc+3rneSSWaZAH9Alejt8I7/fA9FVhZfVIJv1eKK/790R+YXUqbhUA7M6sROPrVLrCsIiuzXwL9UTXwuDbwB+CzkGzd7yv7DuU/IBHvF6d6sWXXAdcFHt8IrAI+Ad4H2vidOQx98gDwBd65vAlAVWAE0DXwegLe6YY1wH+Ahn5njpB++Vuxn5U3gNP8zhymflka+BL5BEgNLCv+O2TA08D/gP8CKX5njoA+qRTfK3g7Rt8Du/DOYw/Cu15mMfAV3hX6NQNtU4AXir13YOA7Zg1wld+fJRL6Be+o338DPzf/BQaFKpOGUhUREYlC0XwIXUREpNJSARcREYlCKuAiIiJRSAVcREQkCqmAi4iIRCEVcBERkSikAi4iIhKF/g/N+j/USkGQfAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 504x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x_jarak_duri = RangeSubjektif(min_jarak_duri , max_jarak_duri , 1)\n",
"r_jarak_duri = np.array([\n",
" [min_jarak_duri,min_jarak_duri,mid_jarak_duri,mid_jarak_duri],\n",
" [mid_jarak_duri,mid_jarak_duri,max_jarak_duri,max_jarak_duri]\n",
"])\n",
"\n",
"lo_jarak_duri , hi_jarak_duri = FuzzyShow(r_jarak_duri , x_jarak_duri, 'Jarak Duri (mm)')"
]
},
{
"cell_type": "code",
"execution_count": 386,
"id": "879f64ec",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(0.0, 1.0), (0.0, 0.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0)]\n"
]
}
],
"source": [
"def FungsiKeanggotaan(_range, _min , _hi, _nilai):\n",
" mini = fuzz.interp_membership(_range,_min,_nilai)\n",
" hi = fuzz.interp_membership(_range,_hi,_nilai)\n",
" return mini , hi\n",
" \n",
"i = 0\n",
"anggota_usia = []\n",
"for usia in _data_usia:\n",
" ini_dia = FungsiKeanggotaan(x_usia,lo_usia,hi_usia,usia)\n",
" \n",
" anggota_usia.append(ini_dia)\n",
" i = i+1\n",
"# print(ini_dia) \n",
"print(anggota_usia)"
]
},
{
"cell_type": "code",
"execution_count": 387,
"id": "d6c3a52d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (0.75, 0.25), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (1.0, 0.0), (0.0, 0.0), (0.0, 1.0)]\n"
]
}
],
"source": [
"anggota_berat = []\n",
"for berat in _data_berat:\n",
" ini_dia = FungsiKeanggotaan(x_berat,lo_berat,hi_berat,berat)\n",
" anggota_berat.append(ini_dia)\n",
" \n",
"print(anggota_berat)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 445,
"id": "bd724cff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(0.0, 1.0)\n",
"(1.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(1.0, 0.5)\n",
"(1.0, 1.0)\n",
"(0.0, 0.0)\n",
"(0.0, 1.0)\n",
"(1.0, 1.0)\n",
"(1.0, 1.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"[(0.0, 1.0), (1.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (1.0, 0.5), (1.0, 1.0), (0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 1.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0)]\n"
]
}
],
"source": [
"anggota_keliling = []\n",
"for keliling in _data_keliling:\n",
" ini_dia = FungsiKeanggotaan(x_keliling,lo_keliling,hi_keliling,keliling)\n",
" anggota_keliling.append(ini_dia)\n",
" print(ini_dia)\n",
"print(anggota_keliling) "
]
},
{
"cell_type": "code",
"execution_count": 444,
"id": "0370f3ff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(0.0, 1.0)\n",
"(0.5, 0.5)\n",
"(1.0, 0.0)\n",
"(0.0, 0.0)\n",
"(0.2999999999999998, 0.7000000000000002)\n",
"(0.0, 1.0)\n",
"(1.0, 0.0)\n",
"(0.5, 0.5)\n",
"(0.0, 1.0)\n",
"(0.2999999999999998, 0.7000000000000002)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(0.6000000000000001, 0.3999999999999999)\n",
"(0.7000000000000002, 0.2999999999999998)\n",
"(0.5, 0.5)\n",
"[(0.0, 1.0), (0.5, 0.5), (1.0, 0.0), (0.0, 0.0), (0.2999999999999998, 0.7000000000000002), (0.0, 1.0), (1.0, 0.0), (0.5, 0.5), (0.0, 1.0), (0.2999999999999998, 0.7000000000000002), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (0.6000000000000001, 0.3999999999999999), (0.7000000000000002, 0.2999999999999998), (0.5, 0.5)]\n"
]
}
],
"source": [
"anggota_ukuran_batang = []\n",
"for ukuran_batang in _data_ukuran_batang:\n",
" ini_dia = FungsiKeanggotaan(x_ukuran_batang,lo_ukuran_batang,hi_ukuran_batang,ukuran_batang)\n",
" print(ini_dia)\n",
" anggota_ukuran_batang.append(ini_dia)\n",
"print(anggota_ukuran_batang)"
]
},
{
"cell_type": "code",
"execution_count": 443,
"id": "5e3c20cf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(0.0, 0.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(0.0, 1.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(1.0, 0.0)\n",
"(0.5, 0.5)\n",
"(1.0, 0.0)\n",
"(0.0, 1.0)\n",
"[(0.0, 0.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (0.5, 0.5), (1.0, 0.0), (0.0, 1.0)]\n"
]
}
],
"source": [
"anggota_jarak_duri = []\n",
"for jarak_duri in _data_jarak_duri:\n",
" ini_dia = FungsiKeanggotaan(x_jarak_duri,lo_jarak_duri,hi_jarak_duri,jarak_duri)\n",
" anggota_jarak_duri.append(ini_dia)\n",
" print(ini_dia)\n",
"print(anggota_jarak_duri)"
]
},
{
"cell_type": "code",
"execution_count": 403,
"id": "aa25537e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<h3></h3>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>No</th>\n",
" <th>Rule</th>\n",
" <th>Usia</th>\n",
" <th>Berat</th>\n",
" <th>Keliling</th>\n",
" <th>Ukuran Batang</th>\n",
" <th>Jarak Duri</th>\n",
" <th>Keterangan</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>R1</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>R2</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>R3</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4</td>\n",
" <td>R4</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>5</td>\n",
" <td>R5</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>6</td>\n",
" <td>R6</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>7</td>\n",
" <td>R7</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>8</td>\n",
" <td>R8</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>9</td>\n",
" <td>R9</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>10</td>\n",
" <td>R10</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>11</td>\n",
" <td>R11</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>12</td>\n",
" <td>R12</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>13</td>\n",
" <td>R13</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>14</td>\n",
" <td>R14</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>15</td>\n",
" <td>R15</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>16</td>\n",
" <td>R16</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>17</td>\n",
" <td>R17</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>18</td>\n",
" <td>R18</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>19</td>\n",
" <td>R19</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>20</td>\n",
" <td>R20</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>21</td>\n",
" <td>R21</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>22</td>\n",
" <td>R22</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>23</td>\n",
" <td>R23</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>24</td>\n",
" <td>R24</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>25</td>\n",
" <td>R25</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" </tr>\n",
" <tr>\n",
" <td>26</td>\n",
" <td>R26</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>27</td>\n",
" <td>R27</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>28</td>\n",
" <td>R28</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>29</td>\n",
" <td>R29</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>30</td>\n",
" <td>R30</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>31</td>\n",
" <td>R31</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" <tr>\n",
" <td>32</td>\n",
" <td>R32</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# data_rule = [\n",
"# {'No': '1', 'Rule': 'R1', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '2', 'Rule': 'R2', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '3', 'Rule': 'R3', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '4', 'Rule': 'R4', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '5', 'Rule': 'R5', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '6', 'Rule': 'R6', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '7', 'Rule': 'R7', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '8', 'Rule': 'R8', 'Usia': 'Tinggi','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '9', 'Rule': 'R9', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '10', 'Rule': 'R10', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '11', 'Rule': 'R11', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '12', 'Rule': 'R12', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '13', 'Rule': 'R13', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '14', 'Rule': 'R14', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '15', 'Rule': 'R15', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '16', 'Rule': 'R16', 'Usia': 'Tinggi','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Masak'},\n",
"# {'No': '17', 'Rule': 'R17', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '18', 'Rule': 'R18', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '19', 'Rule': 'R19', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '20', 'Rule': 'R20', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '21', 'Rule': 'R21', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '22', 'Rule': 'R22', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '23', 'Rule': 'R23', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '24', 'Rule': 'R24', 'Usia': 'Rendah','Berat':'Tinggi','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '25', 'Rule': 'R25', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Masak'},\n",
"# {'No': '26', 'Rule': 'R26', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '27', 'Rule': 'R27', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '28', 'Rule': 'R28', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Tinggi','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '29', 'Rule': 'R29', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '30', 'Rule': 'R30', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Tinggi',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'},\n",
"# {'No': '31', 'Rule': 'R31', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Tinggi', 'Keterangan' : 'Mentah'},\n",
"# {'No': '32', 'Rule': 'R32', 'Usia': 'Rendah','Berat':'Rendah','Keliling':'Rendah','Ukuran Batang':'Rendah',\n",
"# 'Jarak Duri' : 'Rendah', 'Keterangan' : 'Mentah'}, \n",
"# ] \n",
"\n",
"# df = data_rule\n",
"\n",
"# df.to_csv('out.csv')\n",
"# Creates DataFrame. \n",
"# df = pd.DataFrame(data_rule) \n",
"# df.to_csv('out.csv',index=False)\n",
"# df.to_excel(\"output.xlsx\")\n",
"df = pd.read_csv(\"dataset/rule.csv\")\n",
"# vals = df.values\n",
"rule_length = len(df.index)\n",
"# list_rule = vals.tolist()\n",
"list_rule = df\n",
" \n",
"# Print the data \n",
"# df\n",
"# from IPython.display import display, HTML\n",
"display(HTML(\"<h3></h3>\"))\n",
"display(HTML(df.to_html(index=False)))"
]
},
{
"cell_type": "code",
"execution_count": 392,
"id": "0cc2f82f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<h3></h3>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Fungsi</th>\n",
" <th>Nama Variabel</th>\n",
" <th>Semesta Pembicaraan</th>\n",
" <th>Himpunan Fuzzy</th>\n",
" <th>Domain</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>Input</td>\n",
" <td>Usia</td>\n",
" <td>[ 9 , 18 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 9 , 14.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 13.0 , 18 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Berat</td>\n",
" <td>[ 505 , 950 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 505 , 827.5 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 807.5 , 950 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Keliling</td>\n",
" <td>[ 30.0 , 46.0 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 30.0 , 43.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 41.0 , 46.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Ukurang Batang</td>\n",
" <td>[ 2.5 , 5.0 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 2.5 , 4.5 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 3.5 , 5.0 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td>Jarak Duri</td>\n",
" <td>[ 7.5 , 10.9 ]</td>\n",
" <td>Rendah</td>\n",
" <td>[ 7.5 , 9.95 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi</td>\n",
" <td>[ 8.95 , 10.9 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td>Output</td>\n",
" <td>Keterangan</td>\n",
" <td>[ 0 , 1 ]</td>\n",
" <td>Rendah (Mentah)</td>\n",
" <td>[ 0 , 0.5 ]</td>\n",
" </tr>\n",
" <tr>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>Tinggi (Masak)</td>\n",
" <td>[ 0.5 , 1 ]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# import itertools as it\n",
"\n",
"\n",
"# my_dict={'Usia':['R','T'],'Berat':['R','T'],'Keliling':['R','T'],'Ukuran Batang':['R','T'],'Jarak Duri':['R','T']}\n",
"# allNames = sorted(my_dict)\n",
"# combinations = it.product(*(my_dict[Name] for Name in allNames))\n",
"# counter = 0\n",
"# for combi in combinations:\n",
"# print(combi)\n",
"# counter = counter + 1\n",
"# print(counter)\n",
"from IPython.display import display, HTML\n",
"display(HTML(\"<h3></h3>\"))\n",
"display(HTML(himpunan_fuzzy.to_html(index=False)))\n"
]
},
{
"cell_type": "code",
"execution_count": 455,
"id": "dc3379a4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>No</th>\n",
" <th>Usia</th>\n",
" <th>Berat</th>\n",
" <th>Keliling</th>\n",
" <th>Ukuran Batang</th>\n",
" <th>Jarak Duri</th>\n",
" <th>Variable Linguistic</th>\n",
" <th>Fuzzy Tsukamoto</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>5</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>6</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>7</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Masak</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>8</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>9</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>10</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>11</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>12</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>13</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>14</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Rendah</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" <tr>\n",
" <td>15</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Rendah</td>\n",
" <td>Tinggi</td>\n",
" <td>Tinggi</td>\n",
" <td>Mentah</td>\n",
" <td>()</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# print(str(list_rule.iloc[[0]]['Usia']))\n",
"# print(list_rule.at[0,'Usia'])\n",
"# haha = \"ngam\" if str(list_rule.at[0,'Usia']) == 'Tinggi' else \"tidak\"\n",
"# print(haha)\n",
"hitungan_fuzzy_tsukamoto = []\n",
"# ii = 1\n",
"for e in range(i):\n",
" ket_usia = \"Tinggi\" if anggota_usia[e][0] < anggota_usia[e][1] else \"Rendah\"\n",
" ket_berat = \"Tinggi\" if anggota_berat[e][0] < anggota_berat[e][1] else \"Rendah\" \n",
" ket_keliling = \"Tinggi\" if anggota_keliling[e][0] <= anggota_keliling[e][1] else \"Rendah\"\n",
" ket_ukuran_batang = \"Tinggi\" if anggota_ukuran_batang[e][0] <= anggota_ukuran_batang[e][1] else \"Rendah\"\n",
" ket_jarak_duri = \"Tinggi\" if anggota_jarak_duri[e][0] < anggota_jarak_duri[e][1] else \"Rendah\"\n",
" \n",
" data_usia = 1 if anggota_usia[e][0] < anggota_usia[e][1] else 0\n",
" data_berat = 1 if anggota_berat[e][0] < anggota_berat[e][1] else 0\n",
" data_keliling = 1 if anggota_keliling[e][0] <= anggota_keliling[e][1] else 0\n",
" data_ukuran_batang = 1 if anggota_ukuran_batang[e][0] <= anggota_ukuran_batang[e][1] else 0\n",
" data_jarak_duri = 1 if anggota_jarak_duri[e][0] < anggota_jarak_duri[e][1] else 0\n",
" \n",
" print(data_usia)\n",
" \n",
" keterangan = None\n",
" for n in range(rule_length):\n",
" if str(list_rule.at[n,'Usia']) == ket_usia and str(list_rule.at[n,'Berat']) == ket_berat and str(list_rule.at[n,'Keliling']) == ket_keliling and str(list_rule.at[n,'Ukuran Batang']) == ket_ukuran_batang and str(list_rule.at[n,'Jarak Duri']) == ket_jarak_duri:\n",
" keterangan = str(list_rule.at[n,'Keterangan'])\n",
" \n",
"# print(keterangan)\n",
" \n",
"# res = next((sub for sub in test_list if sub['is'] == 7), None)\n",
" \n",
" \n",
" data = {\"No\" : e, \"Usia\" : ket_usia, \"Berat\" : ket_berat, \"Keliling\" : ket_keliling, \n",
" \"Ukuran Batang\" : ket_ukuran_batang, \"Jarak Duri\" : ket_jarak_duri ,\"Variable Linguistic\" : keterangan,\n",
" \"Fuzzy Tsukamoto\" : ()\n",
" }\n",
" hitungan_fuzzy_tsukamoto.append(data)\n",
" \n",
" \n",
"# ii = ii +1\n",
"# print(hitungan_fuzzy_tsukamoto)\n",
"df = pd.DataFrame(hitungan_fuzzy_tsukamoto) \n",
"display(HTML(df.to_html(index=False)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25fc43bc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}