first commit
This commit is contained in:
50
main.py
Normal file
50
main.py
Normal file
@ -0,0 +1,50 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import mediapipe as mp
|
||||
import matplotlib.pyplot as plt
|
||||
from google.protobuf.json_format import MessageToDict
|
||||
|
||||
# First step is to initialize the Hands class an store it in a variable
|
||||
mp_hands = mp.solutions.hands
|
||||
|
||||
# Now second step is to set the hands function which will hold the landmarks points
|
||||
hands = mp_hands.Hands(static_image_mode=True, max_num_hands=2, min_detection_confidence=0.3)
|
||||
|
||||
# Last step is to set up the drawing function of hands landmarks on the image
|
||||
mp_drawing = mp.solutions.drawing_utils
|
||||
|
||||
|
||||
# Reading the sample image on which we will perform the detection
|
||||
# sample_img = cv2.imread('coba.jpg')
|
||||
sample_img = cv2.imread('coba2.png')
|
||||
|
||||
# Here we are specifing the size of the figure i.e. 10 -height; 10- width.
|
||||
plt.figure(figsize = [10, 10])
|
||||
|
||||
# Here we will display the sample image as the output.
|
||||
# plt.title("Sample Image");plt.axis('off');plt.imshow(sample_img[:,:,::-1]);plt.show()
|
||||
|
||||
|
||||
results = hands.process(cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if results.multi_hand_landmarks:
|
||||
|
||||
for hand_no, hand_landmarks in enumerate(results.multi_hand_landmarks):
|
||||
|
||||
print(f'HAND NUMBER: {hand_no+1}')
|
||||
print('-----------------------')
|
||||
|
||||
for i in range(2):
|
||||
|
||||
print(f'{mp_hands.HandLandmark(i).name}:')
|
||||
print(f'{hand_landmarks.landmark[mp_hands.HandLandmark(i).value]}')
|
||||
|
||||
# Return whether it is Right or Left Hand
|
||||
i = results.multi_handedness
|
||||
label = MessageToDict(i)['classification'][0]['label']
|
||||
|
||||
if label == 'Left':
|
||||
print("ini telapak tangan kiri")
|
||||
if label == 'Right':
|
||||
print("ini telapak tangan kanan")
|
||||
|
||||
Reference in New Issue
Block a user