Files
2022-10-14 08:20:25 +08:00

345 lines
12 KiB
Python

import os
import shutil
import time
from fastapi import FastAPI, File, UploadFile,HTTPException ,Request
# from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
import cv2
import numpy as np
import mediapipe as mp
import matplotlib.pyplot as plt
import json
# First step is to initialize the Hands class an store it in a variable
mp_hands = mp.solutions.hands
# Now second step is to set the hands function which will hold the landmarks points
hands = mp_hands.Hands(static_image_mode=True, max_num_hands=2, min_detection_confidence=0.3)
# Last step is to set up the drawing function of hands landmarks on the image
mp_drawing = mp.solutions.drawing_utils
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.post("/")
async def image(image: UploadFile = File(...)):
content_type = image.content_type
print(content_type)
if(content_type != "image/jpeg" and content_type != "image/png" and content_type != "image/jpg") :
raise HTTPException(status_code=404, detail="Fail bukan foto")
image_name = image.filename
with open("temp/"+image_name, "wb") as buffer:
shutil.copyfileobj(image.file, buffer)
time.sleep(2)
sample_img = cv2.imread("temp/"+image_name)
sample_img = cv2.flip(sample_img, 1)
results = hands.process(cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB))
if not results.multi_hand_landmarks:
if os.path.exists("temp/"+image_name):
os.remove("temp/"+image_name)
raise HTTPException(status_code=404, detail="Foto harus ada telapak tangan")
if len(results.multi_handedness) > 1:
if os.path.exists("temp/"+image_name):
os.remove("temp/"+image_name)
raise HTTPException(status_code=404, detail="Hanya satu telapak tangan yang bisa diramal")
tangan = results.multi_handedness[0].classification[0].label
if(tangan == 'Right'):
if os.path.exists("temp/"+image_name):
os.remove("temp/"+image_name)
raise HTTPException(status_code=404, detail="Hanya Tangan Kiri Yang Bisa Diramal")
thumb = None
pinky = None
for hand_no, hand_landmarks in enumerate(results.multi_hand_landmarks):
thumb = hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP].x
pinky = hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_TIP].x
cek_tapak_tangan = thumb > pinky
if(cek_tapak_tangan == False):
if os.path.exists("temp/"+image_name):
os.remove("temp/"+image_name)
raise HTTPException(status_code=404, detail="Sila foto telapak tangan kiri anda")
# if os.path.exists("temp/"+image_name):
# os.remove("temp/"+image_name)
change_background_mp = mp.solutions.selfie_segmentation #untuk hapus background
change_bg_segment = change_background_mp.SelfieSegmentation() #untuk hapus background
sample_img1 = sample_img
sample_img = cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB)
sample_img = change_bg_segment.process(sample_img)
sample_img = sample_img.segmentation_mask > 0.9
sample_img = np.dstack((sample_img,sample_img,sample_img))
sample_img = np.where(sample_img, sample_img1, 255)
sample_img = cv2.resize(sample_img, (350,450), interpolation = cv2.INTER_AREA)
shape = sample_img.shape
results = hands.process(cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB))
image_height, image_width, _ = sample_img.shape
result=None
print(results.multi_hand_landmarks)
for hand_landmarks in results.multi_hand_landmarks:
annotated_image = sample_img.copy()
palm_center_y = (hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_CMC].y +
hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_MCP].y)/2.1
palm_center_x = (hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_CMC].x +
hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_MCP].x)/2.1
myradius = int(image_height/4.9)
#annotated_image = makeCircle(annotated_image,palm_center_y,palm_center_x,myradius)
y = int(palm_center_y * image_height)
x = int(palm_center_x * image_width)
circle_coordinates = (x,y)
mask = np.zeros(sample_img.shape, dtype=np.uint8)
cv2.circle(mask, circle_coordinates, myradius, (255,255,255), -1)
ROI = cv2.bitwise_and(sample_img, mask)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
x,y,w,h = cv2.boundingRect(mask)
result = ROI[y:y+h,x:x+w]
mask = mask[y:y+h,x:x+w]
result[mask==0] = (255,255,255)
cv2.imwrite("temp/"+image_name+"cropped.png", result)
cv2.waitKey(0)
sample_img = cv2.imread("temp/"+image_name+"cropped.png")
width = 450
height = 450
dim = (width, height)
sample_img = cv2.resize(sample_img, dim, interpolation = cv2.INTER_AREA)
# cv2.imshow("palm",image) #to view the palm in python
# cv2.waitKey(0)
gray = cv2.cvtColor(sample_img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,25,45,apertureSize = 3)
# cv2.imshow("edges in palm",edges)
# cv2.waitKey(0)
edges = cv2.bitwise_not(edges)
# cv2.imshow("edges in palm1",edges)
cv2.imwrite("temp/"+image_name+"lines.png", edges)
cv2.waitKey(0)
TARGET_FILE = "temp/"+image_name+"lines.png"
IMG_DIR = os.path.abspath(os.path.dirname(__file__)) + '/images/'
IMG_SIZE = (200, 200)
target_img = cv2.imread(TARGET_FILE)
target_img = cv2.resize(target_img, IMG_SIZE)
print('TARGET_FILE: %s' % (TARGET_FILE))
bf = cv2.BFMatcher(cv2.NORM_HAMMING)
detector = cv2.AKAZE_create()
(target_kp, target_des) = detector.detectAndCompute(target_img, None)
hasil_ramalan = None
datas = None
with open('dataset.json') as f:
datas = json.load(f)
pilihan = 2000
image_ramalan = None
files = os.listdir(IMG_DIR)
for file in files:
comparing_img_path = IMG_DIR + file
try:
comparing_img = cv2.imread(comparing_img_path, cv2.IMREAD_GRAYSCALE)
comparing_img = cv2.resize(comparing_img, IMG_SIZE)
(comparing_kp, comparing_des) = detector.detectAndCompute(comparing_img, None)
matches = bf.match(target_des, comparing_des)
dist = [m.distance for m in matches]
ret = sum(dist) / len(dist)
except cv2.error:
ret = 100000
print(file, ret)
if(ret < pilihan):
pilihan =ret
image_ramalan = file
print(image_ramalan)
theindex = None
for index,data in enumerate(datas):
if(data["id"] == image_ramalan):
theindex= index
hasil_ramalan = datas[theindex]['datanya']
if os.path.exists("temp/"):
os.remove("temp/"+image_name+"lines.png")
os.remove("temp/"+image_name+"cropped.png")
os.remove("temp/"+image_name)
return {"message": hasil_ramalan}
# return {"message": "hasil_ramalan"}
# @app.post("/ramalan")
# async def image( request: Request):
# body = await request.form()
# if body:
# print(body['image'].content_type)
# return {"filename": "image.filename"}
# else :
# raise HTTPException(status_code=404, detail="error")
def makeCircle(img,circle_y,circle_x,radius):
image_height, image_width, _ = img.shape
y = int(circle_y * image_height)
x = int(circle_x * image_width)
circle_coordinates = (x,y)
color = (255, 0, 0)
thickness = 2
return cv2.circle(img,circle_coordinates,radius,color,thickness)
@app.post("/ramalan")
async def ramalan(request: Request):
body = await request.form()
if(body == False) :
raise HTTPException(status_code=404, detail="error")
if(body['image'] == None and body['image'] == '' ):
raise HTTPException(status_code=404, detail="error")
# print(body['image'])
image_file = body['image'] #ini file yang akan digunakan
image_src = "temp/"+body['image'] #ini file yang akan digunakan
size = len(image_file)
image_name = image_file[:size - 4]
change_background_mp = mp.solutions.selfie_segmentation #untuk hapus background
change_bg_segment = change_background_mp.SelfieSegmentation() #untuk hapus background
with mp_hands.Hands(
static_image_mode=True,
max_num_hands=1,
min_detection_confidence=0.5) as hands:
image = cv2.flip(cv2.imread(image_src), 1)
sample_img = cv2.flip(cv2.imread(image_src), 1)
image = cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB)
image = change_bg_segment.process(image)
image = image.segmentation_mask > 0.9
image = np.dstack((image,image,image))
image = np.where(image, sample_img, 255)
shape = image.shape
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
image_height, image_width, _ = image.shape
for hand_landmarks in results.multi_hand_landmarks:
palm_center_y = (hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_CMC].y +
hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_MCP].y)/2.1
palm_center_x = (hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_CMC].x +
hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_MCP].x)/2.1
myradius = int(image_height/4.9)
y = int(palm_center_y * image_height)
x = int(palm_center_x * image_width)
circle_coordinates = (x,y)
mask = np.zeros(image.shape, dtype=np.uint8)
cv2.circle(mask, circle_coordinates, myradius, (255,255,255), -1)
ROI = cv2.bitwise_and(image, mask)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
x,y,w,h = cv2.boundingRect(mask)
result = ROI[y:y+h,x:x+w]
mask = mask[y:y+h,x:x+w]
result[mask==0] = (255,255,255)
cv2.imwrite("temp/"+image_name+"cropped.png", result)
cv2.waitKey(0)
image = cv2.imread("temp/"+image_name+"cropped.png")
width = 450
height = 450
dim = (width, height)
image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
# cv2.imshow("palm",image) #to view the palm in python
# cv2.waitKey(0)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,25,45,apertureSize = 3)
# cv2.imshow("edges in palm",edges)
# cv2.waitKey(0)
edges = cv2.bitwise_not(edges)
# cv2.imshow("edges in palm1",edges)
cv2.imwrite("temp/"+image_name+"lines.png", edges)
cv2.waitKey(0)
TARGET_FILE = "temp/"+image_name+"lines.png"
IMG_DIR = os.path.abspath(os.path.dirname(__file__)) + '/images/'
IMG_SIZE = (200, 200)
target_img = cv2.imread(TARGET_FILE)
target_img = cv2.resize(target_img, IMG_SIZE)
print('TARGET_FILE: %s' % (TARGET_FILE))
bf = cv2.BFMatcher(cv2.NORM_HAMMING)
detector = cv2.AKAZE_create()
(target_kp, target_des) = detector.detectAndCompute(target_img, None)
hasil_ramalan = None
datas = None
with open('dataset.json') as f:
datas = json.load(f)
pilihan = 2000
image_ramalan = None
files = os.listdir(IMG_DIR)
for file in files:
comparing_img_path = IMG_DIR + file
try:
comparing_img = cv2.imread(comparing_img_path, cv2.IMREAD_GRAYSCALE)
comparing_img = cv2.resize(comparing_img, IMG_SIZE)
(comparing_kp, comparing_des) = detector.detectAndCompute(comparing_img, None)
matches = bf.match(target_des, comparing_des)
dist = [m.distance for m in matches]
ret = sum(dist) / len(dist)
except cv2.error:
ret = 100000
print(file, ret)
if(ret < pilihan):
pilihan =ret
image_ramalan = file
print(image_ramalan)
theindex = None
for index,data in enumerate(datas):
if(data["id"] == image_ramalan):
theindex= index
hasil_ramalan = datas[theindex]['datanya']
if os.path.exists("temp/"):
os.remove("temp/"+image_name+"lines.png")
os.remove("temp/"+image_name+"cropped.png")
os.remove("temp/"+body['image'])
return {"message": hasil_ramalan}