added single face detection and multiple face detection image
This commit is contained in:
parent
68ba0a7d98
commit
3b1996fbad
Binary file not shown.
|
@ -0,0 +1,3 @@
|
|||
# env folder
|
||||
env/
|
||||
faces/
|
55
app.py
55
app.py
|
@ -2,42 +2,31 @@ import face_recognition
|
|||
import cv2
|
||||
import os
|
||||
|
||||
image_to_scan = 'image1.jpg'
|
||||
image_dataset_folder = 'faces'
|
||||
image_load = 'image1.jpg'
|
||||
# image_data = 'faces/rika.png'
|
||||
image_data = 'faces/rika.png'
|
||||
|
||||
# Load the image to scan
|
||||
image = face_recognition.load_image_file(image_to_scan)
|
||||
# Load the images
|
||||
image_load_path = os.path.join(os.getcwd(), image_load)
|
||||
image_data_path = os.path.join(os.getcwd(), image_data)
|
||||
image_load = face_recognition.load_image_file(image_load_path)
|
||||
image_data = face_recognition.load_image_file(image_data_path)
|
||||
|
||||
# Detect the faces in the image
|
||||
face_locations = face_recognition.face_locations(image)
|
||||
# Find the face locations and encodings in each image
|
||||
image_load_face_locations = face_recognition.face_locations(image_load)
|
||||
image_load_face_encodings = face_recognition.face_encodings(image_load, image_load_face_locations)
|
||||
image_data_face_locations = face_recognition.face_locations(image_data)
|
||||
image_data_face_encodings = face_recognition.face_encodings(image_data, image_data_face_locations)
|
||||
|
||||
# Draw a rectangle around each detected face using OpenCV
|
||||
for (top, right, bottom, left) in face_locations:
|
||||
cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
|
||||
# Compare the face encodings
|
||||
matches = face_recognition.compare_faces(image_data_face_encodings, image_load_face_encodings[0])
|
||||
|
||||
# Display the image with the detected faces in a window
|
||||
cv2.imshow('Faces', image)
|
||||
# Draw boxes around the faces in the image_load image
|
||||
for (top, right, bottom, left), match in zip(image_load_face_locations, matches):
|
||||
if match:
|
||||
cv2.rectangle(image_load, (left, top), (right, bottom), (0, 0, 255), 2)
|
||||
|
||||
# Display the image with the boxes around the matching faces
|
||||
cv2.imshow('Image', image_load)
|
||||
cv2.waitKey(0)
|
||||
|
||||
# Load the images from the 'faces' folder and store them in a list
|
||||
images = []
|
||||
for filename in os.listdir(image_dataset_folder):
|
||||
# if the file name ends with '.jpg' or '.png'
|
||||
if filename.endswith('.jpg') or filename.endswith('.png'):
|
||||
images.append(face_recognition.load_image_file(os.path.join(image_dataset_folder, filename)))
|
||||
|
||||
# Loop through the list of images and detect the faces in each image using face_recognition
|
||||
for image in images:
|
||||
# Detect the faces in the image
|
||||
face_locations = face_recognition.face_locations(image)
|
||||
|
||||
# Draw a rectangle around each detected face using OpenCV
|
||||
for (top, right, bottom, left) in face_locations:
|
||||
cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
|
||||
|
||||
# Display the images with the detected faces in a window
|
||||
cv2.imshow('Faces', image)
|
||||
cv2.waitKey(0)
|
||||
|
||||
# Wait for the user to press a key to exit the program
|
||||
cv2.destroyAllWindows()
|
|
@ -0,0 +1,35 @@
|
|||
import face_recognition
|
||||
import cv2
|
||||
import os
|
||||
|
||||
image_load = 'image1.jpg'
|
||||
image_data_folder = 'faces/'
|
||||
|
||||
# Load the images in the image_data_folder and save their face encodings in a list
|
||||
image_dataset = []
|
||||
for filename in os.listdir(image_data_folder):
|
||||
image_data_path = os.path.join(os.getcwd(), image_data_folder, filename)
|
||||
image_data = face_recognition.load_image_file(image_data_path)
|
||||
image_data_encoding = face_recognition.face_encodings(image_data)[0]
|
||||
image_dataset.append((filename, image_data_encoding))
|
||||
|
||||
# Load the image_load and find the face locations and encodings
|
||||
image_load_path = os.path.join(os.getcwd(), image_load)
|
||||
image_load = face_recognition.load_image_file(image_load_path)
|
||||
image_load_face_locations = face_recognition.face_locations(image_load)
|
||||
image_load_face_encodings = face_recognition.face_encodings(image_load, image_load_face_locations)
|
||||
|
||||
# Compare the face encodings in image_load to the face encodings in image_dataset
|
||||
for (top, right, bottom, left), face_encoding in zip(image_load_face_locations, image_load_face_encodings):
|
||||
matches = face_recognition.compare_faces([x[1] for x in image_dataset], face_encoding, tolerance=0.55)
|
||||
if True in matches:
|
||||
# Find the name of the matching face
|
||||
name = image_dataset[matches.index(True)][0]
|
||||
# Draw a box around the face and show the name on the top right of the box
|
||||
cv2.rectangle(image_load, (left, top), (right, bottom), (0, 0, 255), 2)
|
||||
cv2.putText(image_load, name, (right, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||||
|
||||
# Display the image with the boxes and names around the matching faces
|
||||
cv2.imshow('Image', image_load)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
Binary file not shown.
After Width: | Height: | Size: 113 KiB |
Binary file not shown.
After Width: | Height: | Size: 121 KiB |
Binary file not shown.
After Width: | Height: | Size: 106 KiB |
Loading…
Reference in New Issue