import face_recognition import cv2 import os image_data_folder = 'faces/' # Load the images in the image_data_folder and save their face encodings in a list image_dataset = [] for filename in os.listdir(image_data_folder): image_data_path = os.path.join(os.getcwd(), image_data_folder, filename) image_data = face_recognition.load_image_file(image_data_path) image_data_encoding = face_recognition.face_encodings(image_data)[0] image_dataset.append((filename, image_data_encoding)) # Initialize the webcam video_capture = cv2.VideoCapture(-1) while True: # Capture a single frame from the webcam ret, frame = video_capture.read() # Find the face locations and encodings in the frame face_locations = face_recognition.face_locations(frame) face_encodings = face_recognition.face_encodings(frame, face_locations) # Compare the face encodings in the frame to the face encodings in image_dataset for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): matches = face_recognition.compare_faces([x[1] for x in image_dataset], face_encoding, tolerance=0.55) if True in matches: # Find the name of the matching face name = image_dataset[matches.index(True)][0] # Draw a box around the face and show the name on the top right of the box cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.putText(frame, name, (right, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # Display the resulting image cv2.imshow('Video', frame) # Exit the loop if the 'q' key is pressed if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam and close all windows video_capture.release() cv2.destroyAllWindows()