35 lines
1.7 KiB
Python
Executable File
35 lines
1.7 KiB
Python
Executable File
import face_recognition
|
|
import cv2
|
|
import os
|
|
|
|
image_load = 'image2.jpg'
|
|
image_data_folder = 'faces/'
|
|
|
|
# Load the images in the image_data_folder and save their face encodings in a list
|
|
image_dataset = []
|
|
for filename in os.listdir(image_data_folder):
|
|
image_data_path = os.path.join(os.getcwd(), image_data_folder, filename)
|
|
image_data = face_recognition.load_image_file(image_data_path)
|
|
image_data_encoding = face_recognition.face_encodings(image_data)[0]
|
|
image_dataset.append((filename, image_data_encoding))
|
|
|
|
# Load the image_load and find the face locations and encodings
|
|
image_load_path = os.path.join(os.getcwd(), image_load)
|
|
image_load = face_recognition.load_image_file(image_load_path)
|
|
image_load_face_locations = face_recognition.face_locations(image_load)
|
|
image_load_face_encodings = face_recognition.face_encodings(image_load, image_load_face_locations)
|
|
|
|
# Compare the face encodings in image_load to the face encodings in image_dataset
|
|
for (top, right, bottom, left), face_encoding in zip(image_load_face_locations, image_load_face_encodings):
|
|
matches = face_recognition.compare_faces([x[1] for x in image_dataset], face_encoding, tolerance=0.55)
|
|
if True in matches:
|
|
# Find the name of the matching face
|
|
name = image_dataset[matches.index(True)][0]
|
|
# Draw a box around the face and show the name on the top right of the box
|
|
cv2.rectangle(image_load, (left, top), (right, bottom), (0, 0, 255), 2)
|
|
cv2.putText(image_load, name, (right, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
|
|
|
# Display the image with the boxes and names around the matching faces
|
|
cv2.imshow('Image', image_load)
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows() |